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Set Up MATLAB-HDL Simulator Connection

Start MATLAB Server

Start the MATLAB server as follows:

1 Start MATLAB.
2 In the MATLAB Command Window, call the hdldaemon function with property

name/property value pairs that specify whether the HDL Verifier™ software is to
perform the following tasks:

• Use shared memory or TCP/IP socket communication
• Return time values in seconds or as 64-bit integers

See hdldaemon reference documentation for when and how to specify property name/
property value pairs and for more examples of using hdldaemon.

The communication mode that you specify (shared memory or TCP/IP sockets) must
match what you specify for the communication mode when you initialize the HDL
simulator for use with a MATLAB cosimulation session using the matlabtb or
matlabcp function. In addition, if you specify TCP/IP socket mode, the socket port that
you specify with hdldaemon and matlabtb or matlabcp must match. See “TCP/IP
Socket Ports” on page 10-77 for more information .

The MATLAB server can service multiple simultaneous HDL simulator modules and
clients. However, your code must track the I/O associated with each entity or client.

Note: You cannot begin an HDL Verifier transaction between MATLAB and the HDL
simulator from MATLAB. The MATLAB server simply responds to function call requests
that it receives from the HDL simulator.

This command sets up socket communication on port 4449, and specifies a 64-bit time
resolution format for the MATLAB function's output ports.

hdldaemon('socket',4449,'time','int64')
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Start HDL Simulator

Start the HDL simulator directly from MATLAB by calling the HDL Verifier function
vsim or nclaunch.

>>vsim

You can call vsim or nclaunch with additional parameters; see the reference pages for
details.

You must make sure the HDL simulator executables — also called vsim (ModelSim®)
and nclaunch (Cadence Incisive®) — are on the system path. See your system
documentation for instruction on setting environment variables.

Linux Users Make sure the HDL simulator executable is still on the system path after
the shell is launched from MATLAB. If it is not, make sure the shell startup file does not
remove it from the path environment variable.

Load an HDL Design for Verification

After you start the HDL simulator from MATLAB with a call to vsim or nclaunch,
load an instance of an HDL module for verification or visualization with the function
vsimmatlab or hdlsimmatlab. At this point, you should have coded and compiled your
HDL model. Issue the function vsimmatlab or hdlsimmatlab for each instance of an
entity or module in your model that you want to cosimulate. For example (for use with
Incisive®):

hdlsimmatlab work.osc_top

This command loads the HDL Verifier library, opens a simulation workspace for
osc_top, and display a series of messages in the HDL simulator command window as
the simulator loads the entity (see example for remaining code).
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Run MATLAB-HDL Cosimulation

In this section...

“Process for Running MATLAB Cosimulation” on page 1-4
“Check MATLAB Cosimulation Server's Link Status ” on page 1-4
“Run Cosimulation” on page 1-5
“Apply Stimuli to Cosimulation Session with force Command” on page 1-8
“Restart Simulation” on page 1-10
“Stop Simulation” on page 1-10

Process for Running MATLAB Cosimulation

To start and control the execution of a simulation in the MATLAB environment, perform
the following steps:

1 “Check MATLAB Cosimulation Server's Link Status ” on page 1-4
2 “Run Cosimulation” on page 1-5
3 “Apply Stimuli to Cosimulation Session with force Command” on page 1-8
4 “Restart Simulation” on page 1-10 (if applicable).

Check MATLAB Cosimulation Server's Link Status

The first step to starting an HDL simulator and MATLAB test bench or component
function session is to check the link status of the MATLAB server. Is the server running?
If the server is running, what mode of communication and, if applicable, what TCP/IP
socket port is the server using for its links? You can retrieve this information by using
the MATLAB function hdldaemon with the 'status' option. For example:

hdldaemon('status')

The function displays a message that indicates whether the server is running and, if it is
running, the number of connections it is handling. For example:
HDLDaemon socket server is running on port 4449 with 0 connections

If the server is not running, the message reads
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HDLDaemon is NOT running

See the Options: Inputs section in the hdldaemon reference documentation for
information on determining the mode of communication and the TCP/IP socket in use.

Run Cosimulation

You can run a cosimulation session using both the MATLAB and HDL simulator GUIs
(typical) or, to reduce memory demand, you can run the cosimulation using the command
line interface (CLI) or in batch mode.

• “Cosimulation with MATLAB Using the HDL Simulator GUI” on page 1-5
• “Cosimulation with MATLAB Using the Command Line Interface (CLI)” on page

1-7
• “Cosimulation with MATLAB Using Batch Mode” on page 1-8

Cosimulation with MATLAB Using the HDL Simulator GUI

These steps describe a typical sequence for running a simulation interactively from the
main HDL simulator window:

1 Set breakpoints in the HDL and MATLAB code to verify and analyze simulation
progress.

How you set breakpoints in the HDL simulator will vary depending on what
simulator application you are using.

In MATLAB, there are several ways you can set breakpoints; for example, by using
the Set/Clear Breakpoint button on the toolbar.

2 Issue matlabtb command at the HDL simulator prompt.

When you begin a specific test bench or component session, you specify parameters
that identify the following information:

• The mode and, if applicable, TCP/IP data for connecting to a MATLAB server (see
matlabtb reference)

• The MATLAB function that is associated with and executes on behalf of the HDL
instance. See “Bind HDL Module Component to MATLAB Test Bench Function”
on page 2-20.
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• Timing specifications and other control data that specifies when the module's
MATLAB function is to be called. See “Schedule Options for a Test Bench
Session” on page 2-21.

For example:

hdlsim> matlabtb osc_top -sensitivity /osc_top/sine_out

      -socket 4448 -mfunc hosctb

3 Start the simulation by entering the HDL simulator run command.

The run command offers a variety of options for applying control over how a
simulation runs (refer to your HDL simulator documentation for details). For
example, you can specify that a simulation run for several time steps.

The following command instructs the HDL simulator to run the loaded simulation
for 50000 time steps:

run 50000

4 Step through the simulation and examine values.

How you step through the simulation in the HDL simulator will vary depending on
what simulator application you are using.

In MATLAB, there are several ways you can step through code; for example, by
clicking the Step toolbar button.

5 When you block execution of the MATLAB function, the HDL simulator also blocks
and remains blocked until you clear all breakpoints in the function's code.

6 Resume the simulation, as desired.

How you resume the simulation in the HDL simulator will vary depending on what
simulator application you are using.

In MATLAB, there are several ways you can resume the simulation; for example, by
clicking the Continue toolbar button.

The following HDL simulator command resumes a simulation:

run -continue

For more information on HDL simulator and MATLAB debugging features, see the HDL
simulator documentation and MATLAB online help or documentation.
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Cosimulation with MATLAB Using the Command Line Interface (CLI)

Running your cosimulation session using the command-line interface allows you
to interact with the HDL simulator during cosimulation, which can be helpful for
debugging.

To use the CLI, specify "CLI" as the property value for the run mode parameter of the
HDL Verifier HDL simulator launch command.

The Tcl command you build to pass to the HDL simulator launch command must contain
the run command or no cosimulation will take place.

Caution Close the terminal window by entering quit -f at the command prompt. Do not
close the terminal window by clicking the "X" in the upper right-hand corner. This causes
a memory-type error to be issued from the system. This is not a bug with HDL Verifier
but just the way the HDL simulator behaves in this context.

You can type CTRL+C to interrupt and terminate the simulation in the HDL simulator
but this action also causes the memory-type error to be displayed.

Specify CLI mode with nclaunch (Cadence Incisive)

Issue the nclaunch command with "CLI" as the runmode property value, as follows
(example entered into the MATLAB editor):
tclcmd = {  ['cd ',projdir],...

            ['exec ncvlog ' srcfile],...

            'exec ncelab -access +wc lowpass_filter',...

            ['hdlsimmatlab -gui  lowpass_filter ', ...

             ' -input "{@matlabtb lowpass_filter 10ns -repeat 10ns ...

       -mfunc filter_tb_incisive}"',...

             ' -input "{@force lowpass_filter.clk_enable 1 -after 0ns}"',...

             ' -input "{@force lowpass_filter.reset 1 -after 0ns 0 -after 22ns}"',...

             ' -input "{@force lowpass_filter.clk 1 -after 0ns 0 -after 5ns ...

       -repeat 10ns}"',...

             ' -input "{@deposit lowpass_filter.filter_in 0}"',...

            ]};

nclaunch('tclstart',tclcmd,'runmode','CLI');

Specify CLI mode with vsim (Mentor Graphics ModelSim)

Issue the vsim command with "CLI" as the runmode property value, as follows (example
entered into the MATLAB editor):
tclcmd = {  ['cd ',unixprojdir],...
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            'vlib work',... %create library (if applicable)

            'force /osc_top/clk_enable 1 0',...

            'force /osc_top/reset 1 0, 0 120 ns',...

            'force /osc_top/clk 1 0 ns, 0 40 ns -r 80ns',...

            };

vsim('tclstart',tclcmd,'runmode','CLI');

Cosimulation with MATLAB Using Batch Mode

Running your cosimulation session in batch mode allows you to keep the process in the
background, reducing demand on memory by disengaging the GUI.

To use the batch mode, specify "Batch" as the property value for the run mode parameter
of the HDL Verifier HDL simulator launch command. After you issue the HDL Verifier
HDL simulator launch command with batch mode specified, start the simulation in
Simulink®. To stop the HDL simulator before the simulation is completed, issue the
breakHdlSim command.

Specify Batch mode with nclaunch (Cadence Incisive)

Issue the nclaunch command with "Batch" as the runmode parameter, as follows:

nclaunch('tclstart',manchestercmds,'runmode','Batch')

You can also set runmode to 'Batch with Xterm', which starts the HDL simulator in
the background but shows the session in an Xterm.

Specify Batch mode with vsim (Mentor Graphics ModelSim)

On Windows®, specifying batch mode causes ModelSim to be run in a non-interactive
command window. On Linux®, specifying batch mode causes ModelSim to be run in the
background with no window.

Issue the vsim command with 'Batch'as the runmode parameter, as follows:

>> vsim('tclstart',manchestercmds,'runmode','Batch')

Apply Stimuli to Cosimulation Session with force Command

After you establish a connection between the HDL simulator and MATLAB, you can
then apply stimuli to the test bench or component cosimulation environment. One way of
applying stimuli is through the iport parameter of the linked MATLAB function. This
parameter forces signal values by deposit.
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Other ways to apply stimuli include issuing force commands in the HDL simulator
main window (for ModelSim, you can also use the Edit > Clock option in the ModelSim
Signals window).

For example, consider the following sequence of force commands:

• Incisive

force osc_top.clk_enable 1 -after 0ns

force osc_top.reset 0 -after 0ns 1 -after 40ns 0 -after 120ns

force osc_top.clk 1 -after 0ns 0 -after 40ns -repeat 80ns

• ModelSim

VSIM n> force clk 0 0 ns, 1 5 ns -repeat 10 ns

VSIM n> force clk_en 1 0

VSIM n> force reset 0 0

These commands drive the following signals:

• The clk signal to 0 at 0 nanoseconds after the current simulation time and to 1 at 5
nanoseconds after the current HDL simulation time. This cycle repeats starting at 10
nanoseconds after the current simulation time, causing transitions from 1 to 0 and 0
to 1 every 5 nanoseconds, as the following diagram shows.

t 0

0

1

5 10 20 30

...

For example,

force /foobar/clk   0 0, 1 5 -repeat 10

• The clk_en signal to 1 at 0 nanoseconds after the current simulation time.
• The reset signal to 0 at 0 nanoseconds after the current simulation time.

Incisive Users: Using HDL to Code Clock Signals Instead of the force Command

You should consider using HDL to code clock signals as force is a lower performance
solution in the current version of Cadence Incisive simulators.

The following are ways that a periodic force might be introduced:

• Via the Clock pane in the HDL Cosimulation block
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• Via pre/post Tcl commands in the HDL Cosimulation block
• Via a user-input Tcl script to ncsim

All three approaches may lead to performance degradation.

Restart Simulation

Because the HDL simulator issues the service requests during a MATLAB cosimulation
session, you must restart the session from the HDL simulator. To restart a session,
perform the following steps:

1 Make the HDL simulator your active window, if your input focus was not already set
to that application.

2 Reload HDL design elements and reset the simulation time to zero.
3 Reissue the matlabtb or matlabcp command.

Note: To restart a simulation that is in progress, issue a break command and end the
current simulation session before restarting a new session.

Stop Simulation

When you are ready to stop a test bench or component session, it is best to do so in an
orderly way to avoid possible corruption of files and to see that all application tasks shut
down cleanly. You should stop a session as follows:

1 Make the HDL simulator your active window, if your input focus was not already set
to that application.

2 Halt the simulation. You must quit the simulation at the HDL simulator side or
MATLAB may hang until the simulator is quit.

3 Close your project.
4 Exit the HDL simulator, if you are finished with the application.
5 Quit MATLAB, if you are finished with the application. If you want to shut down the

server manually, stop the server by calling hdldaemon with the 'kill' option:

hdldaemon('kill')

For more information on closing HDL simulator sessions, see the HDL simulator
documentation.

1-10



2

HDL Cosimulation Using MATLAB Test
Bench Function

• “Create a MATLAB Test Bench” on page 2-2
• “Set Up Cosimulation Test Bench” on page 2-17
• “Verify HDL Module with MATLAB Test Bench” on page 2-24
• “Automatic Cosimulation Verification” on page 2-41



2 HDL Cosimulation Using MATLAB Test Bench Function

Create a MATLAB Test Bench

The HDL Verifier software provides a means for verifying HDL modules within the
MATLAB environment. You do so by coding an HDL model and a MATLAB function
that can share data with the HDL model. This chapter discusses the programming,
interfacing, and scheduling conventions for MATLAB test bench functions that
communicate with the HDL simulator.

MATLAB test bench  functions let you verify the performance of the HDL model, or of
components within the model. A test bench function drives values onto signals connected
to input ports of an HDL design under test and receives signal values from the output
ports of the module.

The following figure shows how a MATLAB function wraps around and communicates
with the HDL simulator during a test bench simulation session.

HDL Entity

OUT

MATLAB test bench M-Function

Input
Arguments

Output
Arguments

Stimulus Response

MATLAB

HDL Simulator

IN

When linked with MATLAB, the HDL simulator functions as the client, with MATLAB
as the server. The following figure shows a multiple-client scenario connecting to the
server at TCP/IP socket port 4449.

2-2



 Create a MATLAB Test Bench

HDL Simulator
Client

LinkHDL Simulator
Client

Link
Port
4449

MATLAB
Server

The MATLAB server can service multiple simultaneous HDL simulator sessions and
HDL modules. However, you should follow recommended guidelines to help the server
track the I/O associated with each module and session. The MATLAB server, which you
start with the supplied MATLAB function hdldaemon, waits for connection requests
from instances of the HDL simulator running on the same or different computers. When
the server receives a request, it executes the specified MATLAB function you have coded
to perform tasks on behalf of a module in your HDL design. Parameters that you specify
when you start the server indicate whether the server establishes shared memory or
TCP/IP socket communication links.

Refer to “Machine Configuration Requirements” on page 10-2 for valid machine
configurations.

Note: The programming, interfacing, and scheduling conventions for test bench functions
and component functions are virtually identical. For the most part, the same procedures
apply to both types of functions.

Follow these workflow steps to create a MATLAB test bench session for cosimulation
with the HDL simulator.

1 “Write HDL Modules for MATLAB Test Bench” on page 2-4
2 “Write a Test Bench Function” on page 2-8
3 “Set Up MATLAB-HDL Simulator Connection” on page 1-2
4 “Place Test Bench on MATLAB Search Path” on page 2-17
5 “Bind Test Bench Function Calls With matlabtb” on page 2-17
6 “Schedule Options for a Test Bench Session” on page 2-21
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7 Set breakpoints for interactive HDL debug (optional).
8 “Run MATLAB-HDL Cosimulation” on page 1-4

Write HDL Modules for MATLAB Test Bench

• “Coding HDL Modules for Verification with MATLAB” on page 2-4
• “Choose HDL Module Name for Use with MATLAB Test Bench” on page 2-4
• “Specify Port Direction Modes in HDL Module for Use with Test Bench” on page

2-4
• “Specify Port Data Types in HDL Modules for Use with Test Bench” on page 2-5
• “Compile and Elaborate HDL Design for Use with Test Bench” on page 2-6
• “Sample VHDL Entity Definition” on page 2-8

Coding HDL Modules for Verification with MATLAB

The most basic element of communication in the HDL Verifier interface is the HDL
module. The interface passes all data between the HDL simulator and MATLAB as port
data. The HDL Verifier software works with any existing HDL module. However, when
you code an HDL module that is targeted for MATLAB verification, you should consider
its name, the types of data to be shared between the two environments, and the direction
modes.

Choose HDL Module Name for Use with MATLAB Test Bench

Although not required, when naming the HDL module, consider choosing a name that
also can be used as a MATLAB function name. (Generally, naming rules for VHDL® or
Verilog® and MATLAB are compatible.) By default, HDL Verifier software assumes that
an HDL module and its simulation function share the same name. See “Bind Test Bench
Function Calls With matlabtb” on page 2-17.

For details on MATLAB function-naming guidelines, see “MATLAB Programming Tips”
on files and file names in the MATLAB documentation.

Specify Port Direction Modes in HDL Module for Use with Test Bench

In your module statement, you must specify each port with a direction mode (input,
output, or bidirectional). The following table defines these three modes.
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Use VHDL Mode... Use Verilog
Mode...

For Ports That...

IN input Represent signals that can be driven by a MATLAB
function

OUT output Represent signal values that are passed to a
MATLAB function

INOUT inout Represent bidirectional signals that can be driven
by or pass values to a MATLAB function

Specify Port Data Types in HDL Modules for Use with Test Bench

This section describes how to specify data types compatible with MATLAB for ports in
your HDL modules. For details on how the HDL Verifier interface converts data types for
the MATLAB environment, see “Data Type Conversions” on page 10-49.

Note: If you use unsupported types, the HDL Verifier software issues a warning and
ignores the port at run time. For example, if you define your interface with five ports, one
of which is a VHDL access port, at run time, then the interface displays a warning and
your code sees only four ports.

Port Data Types for VHDL Entities

In your entity statement, you must define each port that you plan to test with MATLAB
with a VHDL data type that is supported by the HDL Verifier software. The interface
can convert scalar and array data of the following VHDL types to comparable MATLAB
types:

• STD_LOGIC, STD_ULOGIC, BIT, STD_LOGIC_VECTOR, STD_ULOGIC_VECTOR, and
BIT_VECTOR

• INTEGER and NATURAL
• REAL

• TIME

• Enumerated types, including user-defined enumerated types and CHARACTER

The interface also supports all subtypes and arrays of the preceding types.
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Note: The HDL Verifier software does not support VHDL extended identifiers for the
following components:

• Port and signal names used in cosimulation
• Enum literals when used as array indices of port and signal names used in

cosimulation

However, the software does support basic identifiers for VHDL.

Port Data Types for Verilog Modules

In your module definition, you must define each port that you plan to test with MATLAB
with a Verilog port data type that is supported by the HDL Verifier software. The
interface can convert data of the following Verilog port types to comparable MATLAB
types:

• reg
• integer
• wire

Note: HDL Verifier software does not support Verilog escaped identifiers for port and
signal names used in cosimulation. However, it does support simple identifiers for
Verilog.

Compile and Elaborate HDL Design for Use with Test Bench

After you create or edit your HDL source files, use the HDL simulator compiler to
compile and debug the code.

Compilation for ModelSim

You have the option of invoking the compiler from menus in the ModelSim graphic
interface or from the command line with the vcom command. The following sequence of
ModelSim commands creates and maps the design library work and compiles the VHDL
file modsimrand.vhd:

ModelSim> vlib work

ModelSim> vmap work work

ModelSim> vcom modsimrand.vhd
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The following sequence of ModelSim commands creates and maps the design library
work and compiles the Verilog file test.v:

ModelSim> vlib work

ModelSim> vmap work work

ModelSim> vlog test.v

Note: You should provide read/write access to the signals that are connecting to the
MATLAB session for cosimulation. For higher performance, you want to provide access
only to those signals used in cosimulation. You can check read/write access through the
HDL simulator—see HDL simulator documentation for details.

Compilation for Incisive

The Cadence Incisive simulator allows for 1-step and 3-step processes for HDL
compilation, elaboration, and simulation. The following Cadence Incisive simulator
command compiles the Verilog file test.v:

sh> ncvlog test.v

The following Cadence Incisive simulator command compiles and elaborates the Verilog
design test.v, and then loads it for simulation, in a single step:

sh> ncverilog +gui +access+rwc +linedebug test.v 

The following sequence of Cadence Incisive simulator commands performs all the same
processes in multiple steps:

sh> ncvlog -linedebug test.v

sh> ncelab -access +rwc test

sh> ncsim test

Note: You should provide read/write access to the signals that are connecting to the
MATLAB session for cosimulation. The previous example shows how to provide read/
write access to all signals in your design. For higher performance, you want to provide
access only to those signals used in cosimulation. See the description of the +access flag
to ncverilog and the -access argument to ncelab for details.

For more examples, see the HDL Verifier tutorials and demos. For details on using the
HDL compiler, see the simulator documentation.
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Sample VHDL Entity Definition

This sample VHDL code fragment defines the entity decoder. By default, the entity is
associated with MATLAB test bench function decoder.

The keyword PORT marks the start of the entity's port clause, which defines two IN ports
—isum and qsum—and three OUT ports—adj, dvalid, and odata. The output ports
drive signals to MATLAB function input ports for processing. The input ports receive
signals from the MATLAB function output ports.

Both input ports are defined as vectors consisting of five standard logic values. The
output port adj is also defined as a standard logic vector, but consists of only two values.
The output ports dvalid and odata are defined as scalar standard logic ports. For
information on how the HDL Verifier interface converts data of standard logic scalar and
array types for use in the MATLAB environment, see “Data Type Conversions” on page
10-49.

ENTITY decoder IS

PORT (

  isum   : IN std_logic_vector(4 DOWNTO 0);

  qsum   : IN std_logic_vector(4 DOWNTO 0);

  adj    : OUT std_logic_vector(1 DOWNTO 0);

  dvalid : OUT std_logic;

  odata  : OUT std_logic);

END decoder ;

Write a Test Bench Function

Coding MATLAB Cosimulation Functions

Coding a MATLAB function to verify an HDL module or component requires that you
follow specific coding conventions. You must also understand the data type conversions
that occur, and program data type conversions for operating on data and returning data
to the HDL simulator.

To code a MATLAB function to verify an HDL module or component, perform the
following steps:

1 Learn the syntax for a MATLAB HDL Verifier test bench function. See “Syntax of a
Test Bench Function” on page 2-9.

2 Understand how HDL Verifier software converts data from the HDL simulator for
use in the MATLAB environment. See “Data Type Conversions” on page 10-49.
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3 Choose a name for the MATLAB function. See “Bind HDL Module Component to
MATLAB Test Bench Function” on page 2-20.

4 Define expected parameters in the function definition line. See “MATLAB Function
Syntax and Function Argument Definitions” on page 10-32.

5 Determine the types of port data being passed into the function. See “MATLAB
Function Syntax and Function Argument Definitions” on page 10-32.

6 Extract and, if applicable to the simulation, apply information received in the
portinfo structure. See “Gaining Access to and Applying Port Information” on page
10-35.

7 Convert data for manipulation in the MATLAB environment, as applicable. See
“Converting HDL Data to Send to MATLAB” on page 10-49.

8 Convert data that needs to be returned to the HDL simulator. See “Converting Data
for Return to the HDL Simulator” on page 10-53.

For more tips, see “Test Bench and Component Function Writing” on page 10-28.

Syntax of a Test Bench Function

The syntax of a MATLAB test bench function is

function [iport, tnext] = MyFunctionName(oport, tnow, portinfo)

See the “MATLAB Function Syntax and Function Argument Definitions” on page
10-32 for an explanation of each of the function arguments.

Sample MATLAB Test Bench Function

This section uses a sample MATLAB function to identify sections of a MATLAB test
bench function required by the HDL Verifier software. You can see the full text of
the code used in this sample in the section “MATLAB Builder EX Function Example:
manchester_decoder.m” on page 2-13.

For ModelSim Users This example uses a VHDL entity and MATLAB Builder™ EX
function code drawn from the decoder portion of the Manchester Receiver example. For
the complete VHDL and function code listings, see the following files:
matlabroot\toolbox\edalink\extensions\modelsim\modelsimdemos\vhdl\manchester\decoder.vhd

matlabroot\toolbox\edalink\extensions\modelsim\modelsimdemos\manchester_decoder.m
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As the first step to coding a MATLAB Builder EX test bench function, you must
understand how the data modeled in the VHDL entity maps to data in the MATLAB
Builder EX environment. The VHDL entity decoder is defined as follows:

ENTITY decoder IS

PORT (

  isum   : IN std_logic_vector(4 DOWNTO 0);

  qsum   : IN std_logic_vector(4 DOWNTO 0); 

  adj    : OUT std_logic_vector(1 DOWNTO 0);

  dvalid : OUT std_logic;

  odata  : OUT std_logic

  );

END decoder ;

The following discussion highlights key lines of code in the definition of the
manchester_decoder MATLAB Builder EX function:

1 Specify the MATLAB function name and required parameters.

The following code is the function declaration of the manchester_decoder
MATLAB Builder EX function.

function [iport,tnext] = manchester_decoder(oport,tnow,portinfo)

See “MATLAB Function Syntax and Function Argument Definitions” on page
10-32.

The function declaration performs the following actions:

• Names the function. This declaration names the function manchester_decoder,
which differs from the entity name decoder. Because the names differ, the
function name must be specified explicitly later when the entity is initialized
for verification with the matlabtb or matlabtbeval function. See “Bind HDL
Module Component to MATLAB Test Bench Function” on page 2-20.

• Defines required argument and return parameters. A MATLAB Builder EX test
bench function must return two parameters, iport and tnext, and pass three
arguments, oport, tnow, and portinfo, and must appear in the order shown.
See “MATLAB Function Syntax and Function Argument Definitions” on page
10-32.

The function outputs must be initialized to empty values, as in the following code
example:
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tnext = [];

iport = struct();

You should initialize the function outputs at the beginning of the function, to
follow recommended best practice.

The following figure shows the relationship between the entity's ports and the
MATLAB Builder EX function's iport and oport parameters.

decoder.vhd

Input Signals Output Signals

iport.isum (5)
iport.qsum (5)

oport.adj (2)
oport.dvalid(1)
oport.odata(1)

For more information on the required MATLAB Builder EX test bench function
parameters, see “MATLAB Function Syntax and Function Argument Definitions”
on page 10-32.

2 Make note of the data types of ports defined for the entity being simulated.

The HDL Verifier software converts HDL data types to comparable MATLAB
Builder EX data types and vice versa. As you develop your MATLAB Builder
EX function, you must know the types of the data that it receives from the HDL
simulator and needs to return to the HDL simulator.

The VHDL entity defined for this example consists of the following ports

VHDL Example Port Definitions

Port Direction Type... Converts to/Requires
Conversion to...

isum IN STD_LOGIC_VECTOR(4 DOWNTO 0) A 5-bit column
or row vector of
characters where
each bit maps to
a standard logic
character literal.

qsum IN STD_LOGIC_VECTOR(4 DOWNTO 0) A 5-bit column
or row vector of
characters where
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Port Direction Type... Converts to/Requires
Conversion to...

each bit maps to
a standard logic
character literal.

adj OUT STD_LOGIC_VECTOR(1 DOWNTO 0) A 2-element
column vector of
characters. Each
character matches
a corresponding
character literal that
represents a logic
state and maps to a
single bit.

dvalid OUT STD_LOGIC A character that
matches the
character literal
representing the
logic state.

odata OUT STD_LOGIC A character that
matches the
character literal
representing the
logic state.

For more information on interface data type conversions, see “Data Type
Conversions” on page 10-49.

3 Set up any required timing parameters.

The tnext assignment statement sets up timing parameter tnext such that the
simulator calls back the MATLAB Builder EX function every nanosecond.

tnext = tnow+1e-9;

4 Convert output port data to MATLAB data types for processing.

The following code excerpt illustrates data type conversion of output port data.

%% Compute one row and plot

isum = isum + 1;
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adj(isum) = mvl2dec(oport.adj');

data(isum) = mvl2dec([oport.dvalid oport.odata]);

.

.

.

The two calls to mvl2dec convert the binary data that the MATLAB Builder
EX function receives from the entity's output ports, adj, dvalid, and odata to
unsigned decimal values that MATLAB Builder EX can compute. The function
converts the 2-bit transposed vector oport.adj to a decimal value in the range 0 to
4 and oport.dvalid and oport.odata to the decimal value 0 or 1.

“MATLAB Function Syntax and Function Argument Definitions” on page 10-32
provides a summary of the types of data conversions to consider when coding
simulation MATLAB functions.

5 Convert data to be returned to the HDL simulator.

The following code excerpt illustrates data type conversion of data to be returned to
the HDL simulator.

 if isum == 17

   iport.isum = dec2mvl(isum,5);

   iport.qsum = dec2mvl(qsum,5);    

else

   iport.isum = dec2mvl(isum,5);

end

The three calls to dec2mvl convert the decimal values computed by MATLAB
Builder EX to binary data that the MATLAB Builder EX function can deposit to the
entity's input ports, isum and qsum. In each case, the function converts a decimal
value to 5-element bit vector with each bit representing a character that maps to a
character literal representing a logic state.

“Converting Data for Return to the HDL Simulator” on page 10-53 provides a
summary of the types of data conversions to consider when returning data to the
HDL simulator.

MATLAB Builder EX Function Example: manchester_decoder.m

function [iport,tnext] = manchester_decoder(oport,tnow,portinfo)

% MANCHESTER_DECODER  Test bench for VHDL 'decoder'

%  [IPORT,TNEXT]=MANCHESTER_DECODER(OPORT,TNOW,PORTINFO) -

%    Implements a test of the VHDL decoder entity which is part

%    of the Manchester receiver demo.  This test bench plots
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%    the IQ mapping produced by the decoder.

%

%      iport              oport

%            +-----------+

% isum -(5)->|           |-(2)-> adj

% qsum -(5)->| decoder   |-(1)-> dvalid

%            |           |-(1)-> odata

%            +-----------+

%

%   isum - Inphase Convolution value

%   qsum - Quadrature Convolution value

%   adj  - Clock adjustment ('01','00','10')

%   dvalid - Data validity ('1' = data is valid)

%   odata - Recovered data stream

%

% Adjust = 0 (00b), generate full 16 cycle waveform

%   Copyright 2003-2009 The MathWorks, Inc.

persistent isum;

persistent qsum;

%persistent ga;

persistent x;

persistent y;

persistent adj;

persistent data;

global testisdone;

% This useful feature allows you to manually

% reset the plot by simply typing: >manchester_decoder

tnext = [];

iport = struct();

if nargin == 0,

    isum = [];

    return;

end

if exist('portinfo') == 1

    isum = [];

end

tnext = tnow+1e-9;

if isempty(isum),  %% First call

    scale = 9;

    isum = 0;

    qsum = 0;

    for k=1:2,

        ga(k) = subplot(2,1,k);

        axis([-1 17 -1 17]);

        ylabel('Quadrature');

        line([0 16],[8 8],'Color','r','LineStyle',':','LineWidth',1)

        line([8 8],[0 16],'Color','r','LineStyle',':','LineWidth',1)

    end

    xlabel('Inphase');

    subplot(2,1,1);
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    title('Clock Adjustment (adj)');

    subplot(2,1,2);

    title('Data with Validity');

    iport.isum = '00000';

    iport.qsum = '00000';

    return;

end

% compute one row, then plot

isum = isum + 1;

adj(isum) = bin2dec(oport.adj');

data(isum) = bin2dec([oport.dvalid oport.odata]);

if isum == 17,

    subplot(2,1,1);

    for k=0:16,

        if adj(k+1) == 0,  % Bang on!

            line(k,qsum,'color','k','Marker','o');

        elseif adj(k+1) == 1,  %

            line(k,qsum,'color','r','Marker','<');

        else

            line(k,qsum,'color','b','Marker','>');

        end

    end

    subplot(2,1,2);

    for k=0:16,

        if data(k+1) < 2,  % Invalid

            line(k,qsum,'color','r','Marker','X');

        else

            if data(k+1) == 2,  %Valid and 0!

                line(k,qsum,'color','g','Marker','o');

            else

                line(k,qsum,'color','k','Marker','.');

            end

        end

    end

    isum = 0;

    qsum = qsum + 1;

    if qsum == 17,

        qsum = 0;

        disp('done');

        tnext = [];  % suspend callbacks

        testisdone = 1;

        return;

    end

    iport.isum = dec2bin(isum,5);

    iport.qsum = dec2bin(qsum,5);

else

    iport.isum = dec2bin(isum,5);

end
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More About
• “Test Bench and Component Function Writing” on page 10-28
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Set Up Cosimulation Test Bench

In this section...

“Place Test Bench on MATLAB Search Path” on page 2-17
“Bind Test Bench Function Calls With matlabtb” on page 2-17
“Schedule Options for a Test Bench Session” on page 2-21

Place Test Bench on MATLAB Search Path

• “Use MATLAB which Function to Find Test Bench” on page 2-17
• “Add Test Bench Function to MATLAB Search Path” on page 2-17

Use MATLAB which Function to Find Test Bench

The MATLAB function that you are associating with an HDL component must be on
the MATLAB search path or reside in the current working folder (see the MATLAB cd
function). To verify whether the function is accessible, use the MATLAB which function.
The following call to which checks whether the function MyVhdlFunction is on the
MATLAB search path, for example:

which MyVhdlFunction

/work/incisive/MySym/MyVhdlFunction.m

If the specified function is on the search path, which displays the complete path to the
function. If the function is not on the search path, which informs you that the file was
not found.

Add Test Bench Function to MATLAB Search Path

To add a MATLAB function to the MATLAB search path, open the Set Path window by
clicking File > Set Path, or use the addpath command. Alternatively, for temporary
access, you can change the MATLAB working folder to a desired location with the cd
command.

Bind Test Bench Function Calls With matlabtb

• “Invoke MATLAB Test Bench Command matlabtb” on page 2-18
• “Specify HDL Signal/Port and Module Paths for MATLAB Test Bench Cosimulation”

on page 2-18
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• “Bind HDL Module Component to MATLAB Test Bench Function” on page 2-20

Invoke MATLAB Test Bench Command matlabtb

You invoke matlabtb by issuing the command in the HDL simulator. See the Examples
section of the matlabtb reference page for several examples of invoking matlabtb.

Be sure to follow the path specifications for MATLAB test bench sessions when invoking
matlabtb, as explained in “Specify HDL Signal/Port and Module Paths for MATLAB
Test Bench Cosimulation” on page 2-18.

For instructions in issuing the matlabtb command, see “Run MATLAB-HDL
Cosimulation” on page 1-4.

Specify HDL Signal/Port and Module Paths for MATLAB Test Bench Cosimulation

HDL Verifier software has specific requirements for specifying HDL design hierarchy,
the syntax of which is described in the following sections: one for Verilog at the top level,
and one for VHDL at the top level. Do not use a file name hierarchy in place of the design
hierarchy name.

The rules stated in this section apply to signal/port and module path specifications for
MATLAB cosimulation sessions. Other specifications may work but the HDL Verifier
software does not officially recognize nor support them.

In the following example:

matlabtb u_osc_filter -mfunc oscfilter

u_osc_filter is the top-level component. If you specify a subcomponent, you must
follow valid module path specifications for MATLAB cosimulation sessions.

Path Specifications for MATLAB Link Sessions with Verilog Top Level

• The path specification must start with a top-level module name.
• The path specification can include "." or "/" path delimiters, but it cannot include

mixed delimiters.
• The leaf module or signal must match the HDL language of the top-level module.

The following examples show valid signal and module path specifications:

top.port_or_sig
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/top/sub/port_or_sig

top

top/sub

top.sub1.sub2

The following examples show invalid signal and module path specifications:

• top.sub/port_or_sig

Why this specification is invalid: You cannot use mixed delimiters.
• :sub:port_or_sig

:

:sub

Why this specification is invalid: When you use VHDL-specific delimiters you limit
the interoperability with paths when moving between HDL simulators and between
VHDL and Verilog.

Path Specifications for MATLAB Link Sessions with VHDL Top Level

• The path specification can include the top-level module name, but you do not have to
include it.

• The path specification can include "." or "/" path delimiters, but it cannot include
mixed delimiters.

• The leaf module or signal must match the HDL language of the top-level module.

Examples for ModelSim and Incisive Users

The following examples show valid signal and module path specifications:

top.port_or_sig

/sub/port_or_sig

top

top/sub

top.sub1.sub2

The following examples show invalid signal and module path specifications:

• top.sub/port_or_sig

Why this specification is invalid: You cannot use mixed delimiters.
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• :sub:port_or_sig

:

:sub

Why this specification is invalid: When you use VHDL-specific delimiters you limit
the interoperability with paths when moving between HDL simulators and between
VHDL and Verilog.

Bind HDL Module Component to MATLAB Test Bench Function

By default, the HDL Verifier software assumes that the name for a MATLAB function
matches the name of the HDL module that the function verifies. When you create a test
bench or component function that has a different name than the design under test, you
must associate the design with the MATLAB function using the -mfunc argument to
matlabtb. This argument associates the HDL module instance to a MATLAB function
that has a different name from the HDL instance.

For more information on the -mfunc argument and for a full list of matlabtb
parameters, see the matlabtb function reference.

For details on MATLAB function naming guidelines, see "MATLAB Programming Tips"
on files and file names in the MATLAB documentation.

Example of Binding Test Bench and Component Function Calls

In this first example, you form an association between the inverter_vl component and
the MATLAB test bench function inverter_tb by invoking the function matlabtb with
the -mfunc argument when you set up the simulation.

matlabtb inverter_vl -mfunc inverter_tb

The matlabtb command instructs the HDL simulator to call back the inverter_tb
function when inverter_vl executes in the simulation.

In this second example, you bind the model osc_top.u_osc_filter to the component
function oscfilter:

matlabcp osc_top.u_osc_filter -mfunc oscfilter

When the HDL simulator calls the oscfilter callback, the function knows to operate on
the model osc_top.u_osc_filter.
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Schedule Options for a Test Bench Session

• “About Scheduling Options for Test Bench Sessions” on page 2-21
• “Schedule Test Bench Session Using matlabtb Arguments” on page 2-21
• “Schedule Test Bench Functions With the tnext Parameter” on page 2-22

About Scheduling Options for Test Bench Sessions

There are two ways to schedule the invocation of a MATLAB function:

• Using the arguments to the HDL Verifier function matlabtb or matlabcp
• Inside the MATLAB function using the tnext parameter

The two types of scheduling are not mutually exclusive. You can combine the matlabtb
or matlabcp timing arguments and the tnext parameter of a MATLAB function to
schedule test bench or component session callbacks.

Schedule Test Bench Session Using matlabtb Arguments

By default, the HDL Verifier software invokes a MATLAB test bench or component
function once (at the time that you make the call to matlabtb or matlabcp). If you
want to apply more control, and execute the MATLAB function more than once, use
the command scheduling options. With these options, you can specify when and how
often the HDL Verifier software invokes the relevant MATLAB function. If applicable,
modify the function or specify timing arguments when you begin a MATLAB test bench
or component function session with the matlabtb or matlabcp function.

You can schedule a MATLAB test bench or component function to execute using the
command arguments under any of the following conditions:

• Discrete time values—Based on time specifications that can also include repeat
intervals and a stop time

• Rising edge—When a specified signal experiences a rising edge

• VHDL: Rising edge is {0 or L} to {1 or H}.
• Verilog: Rising edge is the transition from 0 to x, z, or 1, and from x or z to 1.

• Falling edge—When a specified signal experiences a falling edge

• VHDL: Falling edge is {1 or H} to {0 or L}.
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• Verilog: Falling edge is the transition from 1 to x, z, or 0, and from x or z to 0.
• Signal state change—When a specified signal changes state, based on a list using

the -sensitivity argument to matlabtb.

Schedule Test Bench Functions With the tnext Parameter

You can control the callback timing of a MATLAB function by using that function's
tnext parameter. This parameter passes a time value to the HDL simulator, and the
value gets added to the simulation schedule for that function. If the function returns a
null value ([]) , the software does not add any new entries to the schedule.

You can set the value of tnext to a value of type double or int64. Specify double to
express the callback time in seconds. For example, to schedule a callback in 1 ns, specify:

 tnext = 1e-9

Specify int64 to convert to an integer multiple of the current HDL simulator time
resolution limit. For example: if the HDL simulator time precision is 1 ns, to schedule a
callback at 100 ns, specify:

tnext=int64(100)

Note: The tnext parameter represents time from the start of the simulation. Therefore,
tnext must always be greater than tnow. If it is less, the software does not schedule a
callback.

For more information on tnext and the function prototype, see “MATLAB Function
Syntax and Function Argument Definitions” on page 10-32.

Examples

In this first example, each time the HDL simulator calls the test bench function (via
HDL Verifier), tnext schedules the next callback to the MATLAB function for 1 ns later,
relative to the current simulation time:

tnext = [];

.

.

.

tnext = tnow+1e-9;

2-22



 Set Up Cosimulation Test Bench

Using tnext you can dynamically decide the callback scheduling based on criteria
specific to the operation of the test bench. For example, you can decide to stop scheduling
callbacks when a data signal has a certain value:

    if qsum == 17,

        qsum = 0;

        disp('done');

        tnext = [];  % suspend callbacks

        testisdone = 1;

        return;

    end

This next example demonstrates scheduling a component session using tnext. In the
Oscillator example, the oscfilter function calculates a time interval at which the HDL
simulator calls the callbacks. The component function calculates this interval on the
first call to oscfilter and stores the result in the variable fastestrate. The variable
fastestrate represents the sample period of the fastest oversampling rate supported
by the filter. The function derives this rate from a base sampling period of 80 ns.

The following assignment statement sets the timing parameter tnext. This parameter
schedules the next callback to the MATLAB component function, relative to the current
simulation time (tnow).

tnext = tnow + fastestrate;

The function returns a new value for tnext each time the HDL simulator calls the
function.
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Verify HDL Module with MATLAB Test Bench

In this section...

“Tutorial Overview” on page 2-24
“Set Up Tutorial Files” on page 2-25
“Start the MATLAB Server” on page 2-25
“Start ModelSim Simulator and Set Up for Cosimulation” on page 2-27
“Develop VHDL Code” on page 2-28
“Compile VHDL Code” on page 2-30
“Develop MATLAB Function” on page 2-31
“Load Simulation” on page 2-33
“Run Simulation” on page 2-35
“Shut Down Simulation” on page 2-39

Tutorial Overview

This tutorial guides you through the basic steps for setting up an HDL Verifier
application that uses MATLAB to verify a simple HDL design. In this tutorial, you
develop, simulate, and verify a model of a pseudorandom number generator based on the
Fibonacci sequence. The model is coded in VHDL.

Note: This tutorial demonstrates creating and running a test bench using ModelSim SE
6.5. If you are not using this version, the messages and screen images from ModelSim
may not appear to you exactly as they do in this tutorial.

This tutorial requires MATLAB, the HDL Verifier software, and the ModelSim HDL
simulator.

In this tutorial, you will perform the following steps:

1 “Set Up Tutorial Files” on page 2-25
2 “Start the MATLAB Server” on page 2-25
3 “Start ModelSim Simulator and Set Up for Cosimulation” on page 2-27
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4 “Develop VHDL Code” on page 2-28
5 “Compile VHDL Code” on page 2-30
6 “Develop MATLAB Function” on page 2-31
7 “Load Simulation” on page 2-33
8 “Run Simulation” on page 2-35
9 “Shut Down Simulation” on page 2-39

Set Up Tutorial Files

To help others have access to copies of the tutorial files, set up a folder for your own
tutorial work:

1 Create a folder outside the scope of your MATLAB installation folder into which you
can copy the tutorial files. The folder must be writable. This tutorial assumes that
you create a folder named MyPlayArea.

2 Copy the following files to the folder you just created:

matlabroot\toolbox\edalink\extensions\modelsim\modelsimdemos

\modsimrand_plot.m

matlabroot\toolbox\edalink\extensions\modelsim\modelsimdemos\VHDL

\modsimrand\modsimrand.vhd

Start the MATLAB Server

This section describes starting MATLAB, setting up the current folder for completing the
tutorial, starting the MATLAB server component, and checking for client connections,
using shared memory or TCP/IP socket mode. These instructions assume you are familiar
with the MATLAB user interface.

Perform the following steps:

1 Start MATLAB.
2 Set your MATLAB current folder to the folder you created in “Set Up Tutorial Files”

on page 2-25.
3 Verify that the MATLAB server is running by calling function hdldaemon with the

'status' option in the MATLAB Command Window as shown here:
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hdldaemon('status')

If the server is not running, the function displays

HDLDaemon is NOT running

If the server is running in TCP/IP socket mode, the message reads

HDLDaemon socket server is running on Port portnum with 0 connections

If the server is running in shared memory mode, the message reads

HDLDaemon shared memory server is running with 0 connections

If the server is not currently running, skip to step 5.
4 Shut down the server by typing

hdldaemon('kill')

You will see the following message that confirms that the server was shut down.

HDLDaemon server was shutdown

5 Start the server in TCP/IP socket mode by calling hdldaemon with the property
name/property value pair 'socket' 0. The value 0 specifies that the operating
system assign the server a TCP/IP socket port that is available on your system. For
example

hdldaemon('socket', 0)

The server informs you that it has started by displaying the following message. The
portnum will be specific to your system:

HDLDaemon socket server is running on Port portnum with 0 connections

Make note of portnum as you will need it when you issue the matlabtb command in
“Load Simulation” on page 2-33.

You can alternatively specify that the MATLAB server use shared memory
communication instead of TCP/IP socket communication; however, for this tutorial
we will use socket communication as means of demonstrating this type of connection.
For details on how to specify the various options, see the description of hdldaemon.

2-26



 Verify HDL Module with MATLAB Test Bench

Start ModelSim Simulator and Set Up for Cosimulation

This section describes the basic procedure for starting the ModelSim software and setting
up a ModelSim design library. These instructions assume you are familiar with the
ModelSim user interface.

Perform the following steps:

1 Start ModelSim from the MATLAB environment by calling the function vsim in the
MATLAB Command Window.

vsim

This function launches and configures ModelSim for use with the HDL Verifier
software. The first folder of ModelSim matches your MATLAB current folder.

2 Verify the current ModelSim folder. You can verify that the current ModelSim folder
matches the MATLAB current folder by entering the ls command in the ModelSim
command window.

The command should list the files modsimrand.vhd, modsimrand_plot.m,
transcript, and compile_and_launch.tcl.

If it does not, change your ModelSim folder to the current MATLAB folder. You can
find the current MATLAB folder by looking in the Current Folder Browser or by
viewing the Current folder navigation bar. In ModelSim, you can change the working
folder by issuing the command

cd directory

Where directory is the folder you want to work from. Or you may also change
directory by selecting File > Change Directory....
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3 Create a design library to hold your compilation results. To create the library and
required _info file, enter the vlib and vmap commands as follows:

ModelSim> vlib work

ModelSim> vmap work work

Note: You must use the ModelSim File menu or vlib command to create the library
folder so that the required _info file is created. Do not create the library with
operating system commands.

Develop VHDL Code

After setting up a design library, typically you would use the ModelSim Editor to create
and modify your HDL code. For this tutorial, you do not need to create the VHDL code
yourself. Instead, open and examine the existing file modsimrand.vhd. This section
highlights areas of code in modsimrand.vhd that are of interest for a ModelSim and
MATLAB test bench.

If you choose not to examine the HDL code at this time, skip to “Compile VHDL Code” on
page 2-30.

You can open modsimrand.vhd in the edit window with the edit command, as follows:

ModelSim> edit modsimrand.vhd
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ModelSim opens its edit window and displays the VHDL code for modsimrand.vhd.

While you are viewing the file, note the following:

• The line ENTITY modsimrand contains the definition for the VHDL entity
modsimrand:

ENTITY modsimrand IS

PORT (

  clk     : IN std_logic ;

  clk_en  : IN std_logic ;

  reset   : IN std_logic ;

  dout    : OUT std_logic_vector (31 DOWNTO 0);

END modsimrand;
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This is the entity that will be verified in the MATLAB environment during the
tutorial. Note the following:

• By default, the MATLAB server assumes that the name of the MATLAB function
that verifies the entity in the MATLAB environment is the same as the entity
name. You have the option of naming the MATLAB function explicitly. However,
if you do not specify a name, the server expects the function name to match the
entity name. In this example, the MATLAB function name is modsimrand_plot
and does not match.

• The entity must be defined with a PORT clause that includes at least one port
definition. Each port definition must specify a port mode (IN, OUT, or INOUT) and a
VHDL data type that is supported by the HDL Verifier software.

The entity modsimrand in this example is defined with three input ports
clk, clk_en, and reset of type STD_LOGIC and output port dout of type
STD_LOGIC_VECTOR. The output port passes simulation output data out to the
MATLAB function for verification. The optional input ports receive clock and reset
signals from the function. Alternatively, the input ports can receive signals from
ModelSim force commands.

For more information on coding port entities for use with MATLAB, see “Coding
HDL Modules for Verification with MATLAB” on page 2-4.

• The remaining code for modsimrand.vhd defines a behavioral architecture for
modsimrand that writes a randomly generated Fibonacci sequence to an output
register when the clock experiences a rising edge.

When you are finished examining the file, close the ModelSim edit window.

Compile VHDL Code

After you create or edit your VHDL source files, compile them. As part of this tutorial,
compile modsimrand.vhd. One way of compiling the file is to click the file name in
the project workspace and select Compile > Compile All. An alternative is to specify
modsimrand.vhd with the vcom command, as follows:

ModelSim> vcom modsimrand.vhd

If the compilation succeeds, messages appear in the command window and the compiler
populates the work library with the compilation results.
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Develop MATLAB Function

The HDL Verifier software verifies HDL hardware in MATLAB as a function. Typically,
at this point you would create or edit a MATLAB function that meets HDL Verifier
requirements. For this tutorial, you do not need to develop the MATLAB test bench
function yourself. Instead, open and examine the existing file modsimrand_plot.m.

If you choose not to examine the HDL code at this time, skip to “Load Simulation” on
page 2-33.

Note: modsimrand_plot.m is a lower-level component of the MATLAB Random
Number Generator example. Plotting code within modsimrand_plot.m is not discussed
in the next section. This tutorial focuses only on those parts of modsimrand_plot.m that
are required for MATLAB to verify a VHDL model.

You can open modsimrand_plot.m in the MATLAB Editor. For example:

edit modsimrand_plot.m

While you are viewing the file, note the following:

• On line 1, you will find the MATLAB function name specified along with its required
parameters:

function [iport,tnext] = modsimrand_plot(oport,tnow,portinfo)

This function definition is significant because it represents the communication
channel between MATLAB and ModelSim. Note:

• When coding the function, you must define the function with two output
parameters, iport and tnext, and three input parameters, oport, tnow, and
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portinfo. See “MATLAB Function Syntax and Function Argument Definitions”
on page 10-32.

• You can use the iport parameter to drive input signals instead of, or in addition
to, using other signal sources, such as ModelSim force commands. Depending
on your application, you might use any combination of input sources. However,
if multiple sources drive signals to a single iport, you will need a resolution
function to handle signal contention.

• On lines 22 and 23, you will find some parameter initialization:

tnext = [];

iport = struct();

In this case, function outputs iport and tnext are initialized to empty values.
• When coding a MATLAB function for use with HDL Verifier, you need to know the

types of the data that the test bench function receives from and needs to return to
ModelSim and how HDL Verifier handles this data; see “Data Type Conversions” on
page 10-49. This function includes the following port data type definitions and
conversions:

• The entity defined for this tutorial consists of three input ports of type STD_LOGIC
and an output port of type STD_LOGIC_VECTOR.

• Data of type STD_LOGIC_VECTOR consists of a column vector of characters with
one bit per character.

• The interface converts scalar data of type STD_LOGIC to a character that matches
the character literal for the corresponding enumerated type.

On line 62, the line of code containing oport.dout shows how the data that a
MATLAB function receives from ModelSim might need to be converted for use in the
MATLAB environment:

ud.buffer(cyc) = mvl2dec(oport.dout)

In this case, the function receives STD_LOGIC_VECTOR data on oport. The function
mvl2dec converts the bit vector to a decimal value that can be used in arithmetic
computations. “Data Type Conversions” on page 10-49 provides a summary of the
types of data conversions to consider when coding your own MATLAB functions.

• Feel free to browse through the rest of modsimrand_plot.m. When you are finished,
go to “Load Simulation” on page 2-33.
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Load Simulation

After you compile the VHDL source file, you are ready to load the model for simulation.
This section explains how to load an instance of entity modsimrand for simulation:

1 Load the instance of modsimrand for verification. To load the instance, specify the
vsimmatlab command as follows:

ModelSim> vsimmatlab modsimrand

The vsimmatlab command starts the ModelSim simulator, vsim, specifically for use
with MATLAB. ModelSim displays a series of messages in the command window as
it loads the entity's packages and architecture.
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2 Initialize the simulator for verifying modsimrand with MATLAB. You initialize
ModelSim by using the HDL Verifier matlabtb command. This command defines
the communication link and a callback to a MATLAB function that executes in
MATLAB on behalf of ModelSim. In addition, the matlabtb command can specify
parameters that control when the MATLAB function executes.

For this tutorial, enter the following matlabtb command:
> matlabtb modsimrand -mfunc modsimrand_plot -rising /modsimrand/clk -socket portnum
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Arguments in the command line specify the following conditions:

• modsimrand— Specifies the VHDL module to cosimulate.
• -mfunc modsimrand_plot— Links an instance of the entity modsimrand to

the MATLAB function modsimrand_plot.m. The argument is required because
the entity name is not the same as the test bench function name.

• -rising /modsimrand/clk— Specifies that the test bench function be called
whenever signal /modsimrand/clk experiences a rising edge.

• -socket portnum— Specifies the port number issued with or returned by the
call to hdldaemon in “Start the MATLAB Server” on page 2-25.

3 Initialize clock and reset input signals. You can drive simulation input signals
using several mechanisms, including ModelSim force commands and an iport
parameter (see “Syntax of a Test Bench Function” on page 2-9). For now, enter the
following force commands:

> force /modsimrand/clk 0 0 ns, 1 5 ns -repeat 10 ns

> force /modsimrand/clk_en 1

> force /modsimrand/reset 1 0, 0 50 ns

The first command forces the clk signal to value 0 at 0 nanoseconds and to 1 at 5
nanoseconds. After 10 nanoseconds, the cycle starts to repeat every 10 nanoseconds.
The second and third force commands set clk_en to 1 and reset to 1 at 0
nanoseconds and to 0 at 50 nanoseconds.

The ModelSim environment is ready to run a simulation. Now, you need to set up the
MATLAB function.

Run Simulation

This section explains how to start and monitor this simulation, and rerun it, if you desire.
When you have completed as many simulation runs as desired, shut down the simulation
as described in the next section.

Running the Simulation for the First Time

Before running the simulation for the first time, you must verify the client connection.
You may also want to set breakpoints for debugging.

Perform the following steps:
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1 Open ModelSim and MATLAB windows.
2 In MATLAB, verify the client connection by calling hdldaemon with the 'status'

option:

hdldaemon('status')

This function returns a message indicating a connection exists:

HDLDaemon socket server is running on port 4795 with 1 connection

Or

HDLDaemon shared memory server is running with 1 connection

Note: If you attempt to run the simulation before starting the hdldaemon in
MATLAB, you will receive the following warning:

#ML Warn - MATLAB server not available (yet),

  The entity 'modsimrand' will not be active

3 Open modsimrand_plot.m in the MATLAB Editor.
4 Search for oport.dout and set a breakpoint at that line by clicking next to the line

number. A red breakpoint marker will appear.
5 Return to ModelSim and enter the following command in the command window:

 > run 80000

This command instructs ModelSim to advance the simulation 80,000 time steps
(80,000 nanoseconds using the default time step period). Because you previously set
a breakpoint in modsimrand_plot.m, however, the simulation runs in MATLAB
until it reaches the breakpoint.

ModelSim is now blocked and remains blocked until you explicitly unblock it. While
the simulation is blocked, note that MATLAB displays the data that ModelSim
passed to the MATLAB function in the Workspace window.
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In ModelSim, an empty figure window opens. You can use this window to plot data
generated by the simulation.

6 Examine oport, portinfo, and tnow by hovering over these arguments inside the
MATLAB Editor. Observe that tnow, the current simulation time, is set to 0. Also
notice that, because the simulation has reached a breakpoint during the first call to
modsimrand_plot, the portinfo argument is visible in the MATLAB workspace.

7 Click Continue in the MATLAB Editor. The next time the breakpoint is reached,
notice that portinfo no longer appears in the MATLAB workspace. The portinfo
function does not show because it is passed in only on the first function invocation.
Also note that the value of tnow advances from 0 to 5e-009.

8 Clear the breakpoint by clicking the red breakpoint marker.
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9 Unblock ModelSim and continue the simulation by clicking Continue in the
MATLAB Editor.

The simulation runs to completion. As the simulation progresses, it plots generated
data in a figure window. When the simulation completes, the figure window appears
as shown here.

The simulation runs in MATLAB until it reaches the breakpoint that you just set.
Continue the simulation/debugging session as desired.
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Rerunning the Simulation

If you want to run the simulation again, you must restart the simulation in ModelSim,
reinitialize the clock, and reset input signals. To do so:

1 Close the figure window.
2 Restart the simulation with the following command:

> restart

The Restart dialog box appears. Leave all the options enabled, and click Restart.

Note: The Restart button clears the simulation context established by a matlabtb
command. Thus, after restarting ModelSim, you must reissue the previous command
or issue a new command.

3 Reissue the matlabtb command in the HDL simulator.

> matlabtb modsimrand -mfunc modsimrand_plot -rising /modsimrand/clk -socket portnum

4 Open modsimrand_plot.m in the MATLAB Editor.
5 Set a breakpoint at the same line as in the previous run.
6 Return to ModelSim and re-enter the following commands to reinitialize clock and

input signals:

> force /modsimrand/clk 0 0,1 5 ns -repeat 10 ns

> force /modsimrand/clk_en 1

> force /modsimrand/reset 1 0, 0 50 ns

7 Enter a command to start the simulation, for example:

> run 80000

Shut Down Simulation

This section explains how to shut down a simulation in an orderly way.

In ModelSim, perform the following steps:

1 Stop the simulation on the client side by selecting Simulate > End Simulation or
entering the quit command.

2 Quit ModelSim.
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In MATLAB, you can just quit the application, which will shut down the simulation and
also close MATLAB.

To shut down the server without closing MATLAB, you have the option of calling
hdldaemon with the 'kill' option:

hdldaemon('kill')

The following message appears, confirming that the server was shut down:

HDLDaemon server was shutdown
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Automatic Cosimulation Verification

Cosimulate the device-under-test (DUT) in ModelSim or Cadence Incisive. You can
optionally include a test bench in MATLAB. To use this feature, you must have an HDL
Coder™ license.

1 Start the MATLAB to HDL Workflow Advisor.

2 At step HDL Verification, click Verify with Cosimulation.
3 Select Generate HDL test bench to instruct HDL Coder to generate HDL test

bench code from your MATLAB test script (optional).
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4 Select Log outputs for comparison plots if you would like to log and plot outputs
of the reference design function and HDL simulator (optional).

5 For Cosimulate for use with, select either Mentor Graphics ModelSim or
Cadence Incisive as the HDL simulator you want for cosimulation.

6 For HDL simulator run mode in cosimulation, select Batch mode for non-interactive
simulation. Select GUI mode to view waveforms.

7 Select Simulate generated cosimulation test bench to automatically verify the
generated HDL code in a cosimulation test bench.

8 For Advanced Options, select and set the optional parameters according to the
descriptions in the following table.

Parameter Description

Clock high time (ns) Specify the number of nanoseconds the
clock is high.

Clock low time (ns) Specify the number of nanoseconds the
clock is low.

Hold time (ns) Specify the hold time for input signals
and forced reset signals.

Clock enable delay (in clock cycles) Specify time (in clock cycles) between
deassertion of reset and assertion of clock
enable.

Reset length (in clock cycles) Specify time (in clock cycles) between
assertion and deassertion of reset.

9 Optionally, select Skip this step if you don’t want to verify with cosimulation.
10 Click Run.

If you selected Batch mode, a command window appears to launch the HDL
simulator and run the cosimulation. This window is closed programmatically. If you
selected GUI mode, the HDL simulator is opened and left open after simulation so
that you may examine the waveforms and other signal data.

If there are errors, those messages appear in the message pane. Correct any errors
and click Run.
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Create a MATLAB Component Function

The HDL Verifier software provides a means for visualizing HDL components within
the MATLAB environment. You do so by coding an HDL model and a MATLAB function
that can share data with the HDL model. This chapter discusses the programming,
interfacing, and scheduling conventions for MATLAB component functions that
communicate with the HDL simulator.

MATLAB component functions simulate the behavior of components in the HDL model.
A stub module (providing port definitions only) in the HDL model passes its input signals
to the MATLAB component function. The MATLAB component processes this data and
returns the results to the outputs of the stub module. A MATLAB component typically
provides some functionality (such as a filter) that is not yet implemented in the HDL
code.

The following figure shows how an HDL simulator wraps around a MATLAB component
function and how MATLAB communicates with the HDL simulator during a component
simulation session.

When linked with MATLAB, the HDL simulator functions as the client, with MATLAB
as the server. The following figure shows a multiple-client scenario connecting to the
server at TCP/IP socket port 4449.
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The MATLAB server can service multiple simultaneous HDL simulator sessions and
HDL modules. However, you should follow recommended guidelines to help the server
track the I/O associated with each module and session. The MATLAB server, which you
start with the supplied MATLAB function hdldaemon, waits for connection requests
from instances of the HDL simulator running on the same or different computers. When
the server receives a request, it executes the specified MATLAB function you have coded
to perform tasks on behalf of a module in your HDL design. Parameters that you specify
when you start the server indicate whether the server establishes shared memory or
TCP/IP socket communication links.

Refer to “Machine Configuration Requirements” on page 10-2 for valid machine
configurations.

Note: The programming, interfacing, and scheduling conventions for test bench functions
and component functions are virtually identical. For the most part, the same procedures
apply to both types of functions.

Follow these workflow steps to create a MATLAB component function for cosimulation
with the HDL simulator.

1 Create HDL module. Compile, elaborate, and simulate model in HDL simulator . See
“Write HDL Modules for MATLAB Visualization” on page 3-4.

2 Create component MATLAB function. See “Write a Component Function” on page
3-8.

3 “Set Up MATLAB-HDL Simulator Connection” on page 1-2.
4 Place component function on MATLAB search path. See “Place Component Function

on MATLAB Search Path” on page 3-10.
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5 Bind HDL instance with component function using matlabcp. See “Bind Component
Function Calls With matlabcp” on page 3-10.

6 Add scheduling options. See “Schedule Options for a Component Session” on page
3-14.

7 Set breakpoints for interactive HDL debug (optional).
8 Run cosimulation from HDL simulator. See “Run MATLAB-HDL Cosimulation” on

page 1-4.

Write HDL Modules for MATLAB Visualization

• “Coding HDL Modules for Visualization with MATLAB” on page 3-4
• “Choose HDL Module Name for Use with MATLAB Component Function” on page

3-5
• “Specify Port Direction Modes in HDL Module for Use with Component Functions” on

page 3-5
• “Specify Port Data Types in HDL Modules for Use with Component Functions” on

page 3-5
• “Compile and Elaborate HDL Design for Use with Component Functions” on page

3-6

Coding HDL Modules for Visualization with MATLAB

The most basic element of communication in the HDL Verifier interface is the HDL
module. The interface passes all data between the HDL simulator and MATLAB as port
data. The HDL Verifier software works with any existing HDL module. However, when
you code an HDL module that is targeted for MATLAB verification, you should consider
its name, the types of data to be shared between the two environments, and the direction
modes. The sections within this chapter cover these topics.

The process for coding HDL modules for MATLAB visualization is as follows:

• “Choose HDL Module Name for Use with MATLAB Component Function” on page
3-5

• “Specify Port Direction Modes in HDL Module for Use with Component Functions” on
page 3-5

• “Specify Port Data Types in HDL Modules for Use with Component Functions” on
page 3-5
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• “Compile and Elaborate HDL Design for Use with Component Functions” on page
3-6

Choose HDL Module Name for Use with MATLAB Component Function

Although not required, when naming the HDL module, consider choosing a name that
also can be used as a MATLAB function name. (Generally, naming rules for VHDL or
Verilog and MATLAB are compatible.) By default, HDL Verifier software assumes that
an HDL module and its simulation function share the same name. See “Bind Test Bench
Function Calls With matlabtb” on page 2-17.

For details on MATLAB function-naming guidelines, see “MATLAB Programming Tips”
on files and file names in the MATLAB documentation.

Specify Port Direction Modes in HDL Module for Use with Component Functions

In your module statement, you must specify each port with a direction mode (input,
output, or bidirectional). The following table defines these three modes.

Use VHDL Mode... Use Verilog
Mode...

For Ports That...

IN input Represent signals that can be driven by a MATLAB
function

OUT output Represent signal values that are passed to a
MATLAB function

INOUT inout Represent bidirectional signals that can be driven
by or pass values to a MATLAB function

Specify Port Data Types in HDL Modules for Use with Component Functions

Port Data Types for VHDL Entities

In your entity statement, you must define each port that you plan to test with MATLAB
with a VHDL data type that is supported by the HDL Verifier software. The interface
can convert scalar and array data of the following VHDL types to comparable MATLAB
types:

• STD_LOGIC, STD_ULOGIC, BIT, STD_LOGIC_VECTOR, STD_ULOGIC_VECTOR, and
BIT_VECTOR

• INTEGER and NATURAL
• REAL
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• TIME

• Enumerated types, including user-defined enumerated types and CHARACTER

The interface also supports all subtypes and arrays of the preceding types.

Note: The HDL Verifier software does not support VHDL extended identifiers for the
following components:

• Port and signal names used in cosimulation
• Enum literals when used as array indices of port and signal names used in

cosimulation

However, the software does support basic identifiers for VHDL.

Port Data Types for Verilog Modules

In your module definition, you must define each port that you plan to test with MATLAB
with a Verilog port data type that is supported by the HDL Verifier software. The
interface can convert data of the following Verilog port types to comparable MATLAB
types:

• reg
• integer
• wire

Note: HDL Verifier software does not support Verilog escaped identifiers for port and
signal names used in cosimulation. However, it does support simple identifiers for
Verilog.

Compile and Elaborate HDL Design for Use with Component Functions

After you create or edit your HDL source files, use the HDL simulator compiler to
compile and debug the code.

Compilation for ModelSim

You have the option of invoking the compiler from menus in the ModelSim graphic
interface or from the command line with the vcom command. The following sequence of
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ModelSim commands creates and maps the design library work and compiles the VHDL
file modsimrand.vhd:

ModelSim> vlib work

ModelSim> vmap work work

ModelSim> vcom modsimrand.vhd

The following sequence of ModelSim commands creates and maps the design library
work and compiles the Verilog file test.v:

ModelSim> vlib work

ModelSim> vmap work work

ModelSim> vlog test.v

Note: You should provide read/write access to the signals that are connecting to the
MATLAB session for cosimulation. For higher performance, you want to provide access
only to those signals used in cosimulation. You can check read/write access through the
HDL simulator—see HDL simulator documentation for details.

Compilation for Incisive

The Cadence Incisive simulator allows for 1-step and 3-step processes for HDL
compilation, elaboration, and simulation. The following Cadence Incisive simulator
command compiles the Verilog file test.v:

sh> ncvlog test.v

The following Cadence Incisive simulator command compiles and elaborates the Verilog
design test.v, and then loads it for simulation, in a single step:

sh> ncverilog +gui +access+rwc +linedebug test.v 

The following sequence of Cadence Incisive simulator commands performs all the same
processes in multiple steps:

sh> ncvlog -linedebug test.v

sh> ncelab -access +rwc test

sh> ncsim test

Note: You should provide read/write access to the signals that are connecting to the
MATLAB session for cosimulation. The previous example shows how to provide read/
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write access to all signals in your design. For higher performance, you want to provide
access only to those signals used in cosimulation. See the description of the +access flag
to ncverilog and the -access argument to ncelab for details.

For more examples, see the HDL Verifier tutorials and demos. For details on using the
HDL compiler, see the simulator documentation.

Write a Component Function

• “Overview to Coding an HDL Verifier Component Function” on page 3-8
• “Syntax of a Component Function” on page 3-9

Overview to Coding an HDL Verifier Component Function

Coding a MATLAB function that is to visualize an HDL module or component requires
that you follow specific coding conventions. You must also understand the data type
conversions that occur, and program data type conversions for operating on data and
returning data to the HDL simulator.

To code a MATLAB function that is to verify an HDL module or component, perform the
following steps:

1 Learn the syntax for a MATLAB HDL Verifier component function. See “Syntax of a
Component Function” on page 3-9.

2 Understand how HDL Verifier software converts data from the HDL simulator for
use in the MATLAB environment. See “Data Type Conversions” on page 10-49.

3 Choose a name for the MATLAB component function. See “Invoke MATLAB
Component Function Command matlabcp” on page 3-11.

4 Define expected parameters in the component function definition line. See “MATLAB
Function Syntax and Function Argument Definitions” on page 10-32.

5 Determine the types of port data being passed into the function. See “MATLAB
Function Syntax and Function Argument Definitions” on page 10-32.

6 Extract and, if applicable to the simulation, apply information received in the
portinfo structure. See “Gaining Access to and Applying Port Information” on page
10-35.

7 Convert data for manipulation in the MATLAB environment, as applicable. See
“Converting HDL Data to Send to MATLAB” on page 10-49.
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8 Convert data that needs to be returned to the HDL simulator. See “Converting Data
for Return to the HDL Simulator” on page 10-53.

For more tips, see “Test Bench and Component Function Writing” on page 10-28.

Syntax of a Component Function

The syntax of a MATLAB component function is

function [iport, tnext] = MyFunctionName(oport, tnow, portinfo)

The input/output arguments, iport and oport, for a MATLAB component function
are the reverse of the port arguments for a MATLAB test bench function. That is, the
MATLAB component function returns signal data to the outputs and receives data from
the inputs of the associated HDL module.

Initialize the function outputs to empty values at the beginning of the function as in the
following example:

tnext = [];

oport = struct();

See “MATLAB Function Syntax and Function Argument Definitions” on page 10-32
for an explanation of each of the function arguments. For more information on using
tnext and tnow for simulation scheduling with matlabcp, see “Schedule Component
Functions Using the tnext Parameter” on page 3-15.

More About
• “Test Bench and Component Function Writing” on page 10-28
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Set Up Cosimulation Component

In this section...

“Place Component Function on MATLAB Search Path” on page 3-10
“Bind Component Function Calls With matlabcp” on page 3-10
“Schedule Options for a Component Session” on page 3-14

Place Component Function on MATLAB Search Path

• “Use MATLAB which Function to Find Component Function” on page 3-10
• “Add Component Function to MATLAB Search Path” on page 3-10

Use MATLAB which Function to Find Component Function

The MATLAB function that you are associating with an HDL component must be on
the MATLAB search path or reside in the current working folder (see the MATLAB cd
function). To verify whether the function is accessible, use the MATLAB which function.
The following call to which checks whether the function MyVhdlFunction is on the
MATLAB search path, for example:

which MyVhdlFunction

/work/incisive/MySym/MyVhdlFunction.m

If the specified function is on the search path, which displays the complete path to the
function. If the function is not on the search path, which informs you that the file was
not found.

Add Component Function to MATLAB Search Path

To add a MATLAB function to the MATLAB search path, open the Set Path window by
clicking File > Set Path, or use the addpath command. Alternatively, for temporary
access, you can change the MATLAB working folder to a desired location with the cd
command.

Bind Component Function Calls With matlabcp

• “Invoke MATLAB Component Function Command matlabcp” on page 3-11
• “Specify HDL Signal/Port and Module Paths for MATLAB Component Function

Cosimulation” on page 3-11
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• “Bind HDL Module Component to MATLAB Component Function” on page 3-13

Invoke MATLAB Component Function Command matlabcp

You invoke matlabcp by issuing the command in the HDL simulator. See the Examples
section of the matlabcp reference page for several examples of invoking matlabcp.

Be sure to follow the path specifications for MATLAB component function sessions when
invoking matlabcp, as explained in “Specify HDL Signal/Port and Module Paths for
MATLAB Component Function Cosimulation” on page 3-11.

For instructions in issuing the matlabcp command, see “Run MATLAB-HDL
Cosimulation” on page 1-4.

Specify HDL Signal/Port and Module Paths for MATLAB Component Function Cosimulation

HDL Verifier software has specific requirements for specifying HDL design hierarchy,
the syntax of which is described in the following sections: one for Verilog at the top level,
and one for VHDL at the top level. Do not use a file name hierarchy in place of the design
hierarchy name.

The rules stated in this section apply to signal/port and module path specifications for
MATLAB cosimulation sessions. Other specifications may work but the HDL Verifier
software does not officially recognize nor support them.

In the following example:

matlabtb u_osc_filter -mfunc oscfilter

u_osc_filter is the top-level component. If you specify a subcomponent, you must
follow valid module path specifications for MATLAB cosimulation sessions.

Path Specifications for MATLAB Link Sessions with Verilog Top Level

• The path specification must start with a top-level module name.
• The path specification can include "." or "/" path delimiters, but it cannot include

mixed delimiters.
• The leaf module or signal must match the HDL language of the top-level module.

The following examples show valid signal and module path specifications:

top.port_or_sig
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/top/sub/port_or_sig

top

top/sub

top.sub1.sub2

The following examples show invalid signal and module path specifications:

• top.sub/port_or_sig

Why this specification is invalid: You cannot use mixed delimiters.
• :sub:port_or_sig

:

:sub

Why this specification is invalid: When you use VHDL-specific delimiters you limit
the interoperability with paths when moving between HDL simulators and between
VHDL and Verilog.

Path Specifications for MATLAB Link Sessions with VHDL Top Level

• The path specification can include the top-level module name, but you do not have to
include it.

• The path specification can include "." or "/" path delimiters, but it cannot include
mixed delimiters.

• The leaf module or signal must match the HDL language of the top-level module.

Examples for ModelSim and Incisive Users

The following examples show valid signal and module path specifications:

top.port_or_sig

/sub/port_or_sig

top

top/sub

top.sub1.sub2

The following examples show invalid signal and module path specifications:

• top.sub/port_or_sig

Why this specification is invalid: You cannot use mixed delimiters.
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• :sub:port_or_sig

:

:sub

Why this specification is invalid: When you use VHDL-specific delimiters you limit
the interoperability with paths when moving between HDL simulators and between
VHDL and Verilog.

Bind HDL Module Component to MATLAB Component Function

By default, the HDL Verifier software assumes that the name for a MATLAB function
matches the name of the HDL module that the function verifies. When you create a test
bench or component function that has a different name than the design under test, you
must associate the design with the MATLAB function using the -mfunc argument to
matlabtb. This argument associates the HDL module instance to a MATLAB function
that has a different name from the HDL instance.

For more information on the -mfunc argument and for a full list of matlabtb
parameters, see the matlabtb function reference.

For details on MATLAB function naming guidelines, see "MATLAB Programming Tips"
on files and file names in the MATLAB documentation.

Example of Binding Test Bench and Component Function Calls

In this first example, you form an association between the inverter_vl component and
the MATLAB test bench function inverter_tb by invoking the function matlabtb with
the -mfunc argument when you set up the simulation.

matlabtb inverter_vl -mfunc inverter_tb

The matlabtb command instructs the HDL simulator to call back the inverter_tb
function when inverter_vl executes in the simulation.

In this second example, you bind the model osc_top.u_osc_filter to the component
function oscfilter:

matlabcp osc_top.u_osc_filter -mfunc oscfilter

When the HDL simulator calls the oscfilter callback, the function knows to operate on
the model osc_top.u_osc_filter.
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Schedule Options for a Component Session

• “About Scheduling Options for Component Sessions” on page 3-14
• “Schedule Component Session Using matlabcp Arguments” on page 3-14
• “Schedule Component Functions Using the tnext Parameter” on page 3-15

About Scheduling Options for Component Sessions

There are two ways to schedule the invocation of a MATLAB function:

• Using the arguments to the HDL Verifier function matlabtb or matlabcp
• Inside the MATLAB function using the tnext parameter

The two types of scheduling are not mutually exclusive. You can combine the matlabtb
or matlabcp timing arguments and the tnext parameter of a MATLAB function to
schedule test bench or component session callbacks.

Schedule Component Session Using matlabcp Arguments

By default, the HDL Verifier software invokes a MATLAB test bench or component
function once (at the time that you make the call to matlabtb or matlabcp). If you
want to apply more control, and execute the MATLAB function more than once, use
the command scheduling options. With these options, you can specify when and how
often the HDL Verifier software invokes the relevant MATLAB function. If applicable,
modify the function or specify timing arguments when you begin a MATLAB test bench
or component function session with the matlabtb or matlabcp function.

You can schedule a MATLAB test bench or component function to execute using the
command arguments under any of the following conditions:

• Discrete time values—Based on time specifications that can also include repeat
intervals and a stop time

• Rising edge—When a specified signal experiences a rising edge

• VHDL: Rising edge is {0 or L} to {1 or H}.
• Verilog: Rising edge is the transition from 0 to x, z, or 1, and from x or z to 1.

• Falling edge—When a specified signal experiences a falling edge

• VHDL: Falling edge is {1 or H} to {0 or L}.
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• Verilog: Falling edge is the transition from 1 to x, z, or 0, and from x or z to 0.
• Signal state change—When a specified signal changes state, based on a list using

the -sensitivity argument to matlabtb.

Schedule Component Functions Using the tnext Parameter

You can control the callback timing of a MATLAB function by using that function's
tnext parameter. This parameter passes a time value to the HDL simulator, and the
value gets added to the simulation schedule for that function. If the function returns a
null value ([]) , the software does not add any new entries to the schedule.

You can set the value of tnext to a value of type double or int64. Specify double to
express the callback time in seconds. For example, to schedule a callback in 1 ns, specify:

 tnext = 1e-9

Specify int64 to convert to an integer multiple of the current HDL simulator time
resolution limit. For example: if the HDL simulator time precision is 1 ns, to schedule a
callback at 100 ns, specify:

tnext=int64(100)

Note: The tnext parameter represents time from the start of the simulation. Therefore,
tnext must always be greater than tnow. If it is less, the software does not schedule a
callback.

For more information on tnext and the function prototype, see “MATLAB Function
Syntax and Function Argument Definitions” on page 10-32.

Examples of Scheduling with tnext

In this first example, each time the HDL simulator calls the test bench function (via
HDL Verifier), tnext schedules the next callback to the MATLAB function for 1 ns later,
relative to the current simulation time:

tnext = [];

.

.

.

tnext = tnow+1e-9;
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Using tnext you can dynamically decide the callback scheduling based on criteria
specific to the operation of the test bench. For example, you can decide to stop scheduling
callbacks when a data signal has a certain value:

    if qsum == 17,

        qsum = 0;

        disp('done');

        tnext = [];  % suspend callbacks

        testisdone = 1;

        return;

    end

This next example demonstrates scheduling a component session using tnext. In the
Oscillator example, the oscfilter function calculates a time interval at which the HDL
simulator calls the callbacks. The component function calculates this interval on the
first call to oscfilter and stores the result in the variable fastestrate. The variable
fastestrate represents the sample period of the fastest oversampling rate supported
by the filter. The function derives this rate from a base sampling period of 80 ns.

The following assignment statement sets the timing parameter tnext. This parameter
schedules the next callback to the MATLAB component function, relative to the current
simulation time (tnow).

tnext = tnow + fastestrate;

The function returns a new value for tnext each time the HDL simulator calls the
function.
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Create a MATLAB System Object

You can verify HDL modules using the HDL Cosimulation System object. You can use
the System object as a test bench or you can use it to represent a component still under
design.

The easiest way to create a test bench System object is to use the HDL Cosimulation
Wizard with existing HDL code. You can also create an HDL Cosimulation System object
manually.

You can find out more about the HDL Cosimulation Wizard and creating System objects
within these topics:

• For an example of how to use the HDL Cosimulation System object, see “Verify
Viterbi Decoder Using MATLAB System Object and Mentor Graphics ModelSim” on
page 4-3.

• For an example of converting existing HDL code to a System object test bench, see
“Import HDL Code for Cosimulation” on page 9-2.

• For general information about how to use System objects, see “System Design and
Simulation in MATLAB” (MATLAB)

See Also
hdlverifier.HDLCosimulation
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Verify Viterbi Decoder Using MATLAB System Object and Mentor
Graphics ModelSim

This example shows you how to use MATLAB® System objects and Mentor Graphics®
ModelSim® to cosimulate a Viterbi decoder implemented in VHDL.

Set Simulation Parameters and Instantiate Communication System Objects

The following code sets up the simulation parameters and instantiates the system
objects that represent the channel encoder, BPSK modulator, AWGN channel,
BPSK demodulator, and error rate calculator. Those objects comprise the system
around the Viterbi decoder and can be thought of as the test bed for the Viterbi HDL
implementation.

EsNo = 0; % Energy per symbol to noise power spectrum density ratio in dB

FrameSize = 1024;  % Number of bits in each frame

% Convolution Encoder

hConEnc = comm.ConvolutionalEncoder;

% BPSK Modulator

hMod    = comm.BPSKModulator;

% AWGN channel

hChan   = comm.AWGNChannel('NoiseMethod', ...

                           'Signal to noise ratio (Es/No)',...

                           'SamplesPerSymbol',1,...

                           'EsNo',EsNo);

% BPSK demodulator

hDemod  = comm.BPSKDemodulator('DecisionMethod','Log-likelihood ratio',...

                               'Variance',0.5*10^(-EsNo/10));

% Error Rate Calculator

hError  = comm.ErrorRate('ComputationDelay',100,'ReceiveDelay', 58);

Instantiate the Cosimulation System Object

The hdlcosim function returns an HDL cosimulation System object, which represents the
HDL implementation of the Viterbi decoder in this simulation system.

hDec    = hdlcosim('InputSignals', {'/viterbi_block/In1','/viterbi_block/In2'}, ...

                   'OutputSignals', {'/viterbi_block/Out1'}, ...

                   'OutputSigned', false, ...

                   'OutputFractionLengths', 0, ...

                   'TCLPreSimulationCommand', 'force /viterbi_block/clk_enable 1 0; force /viterbi_block/clk 0 0 ns, 1 5 ns -repeat 10 ns; force /viterbi_block/reset 1 0 ns, 0 8 ns; ', ...
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                   'TCLPostSimulationCommand', 'echo "done";', ...

                   'PreRunTime', {10,'ns'}, ...

                   'Connection', {'Shared'}, ...

                   'SampleTime', {10,'ns'});

Launch HDL Simulator

The vsim command launches ModelSim. The launched ModelSim session compiles the
HDL design and loads the HDL simulation. You are ready to perform cosimulation when
the HDL simulation is fully loaded in ModelSim.

disp('Waiting for HDL simulator to launch ...');

vsim('tclstart',viterbi_tclcmds_modelsim('vsimmatlabsysobj'));

Timeout=450;

processid = pingHdlSim(Timeout);

% Check if Modelsim is ready for Cosimulation.

assert(ischar(processid),['Timeout: Modelsim took more than ', num2str(Timeout),' seconds to setup,please increase the timeout in ''pingHdlSim''']);

disp('Ready for cosimulation ...');

Run Cosimulation

This example simulates the BPSK communication system in MATLAB incorporating the
Viterbi decoder HDL implementation via the cosimulation System object. This section of
the code calls the processing loop to process the data frame-by-frame with 1024 bits in
each data frame.

for counter = 1:20480/FrameSize

    data            = randi([0 1],FrameSize,1);

    encodedData     = step(hConEnc, data);

    modSignal       = step(hMod, encodedData);

    receivedSignal  = step(hChan, modSignal);

    demodSignalSD   = step(hDemod, receivedSignal);

    quantizedValue  = fi(4-demodSignalSD,0,3,0);

    input1          = quantizedValue(1:2:2*FrameSize);

    input2          = quantizedValue(2:2:2*FrameSize);

    receivedBits    = step(hDec,input1, input2);

    errors          = step(hError, data, double(receivedBits));

end

Display the Bit-Error Rate

The Bit-Error Rate is displayed for the Viterbi decoder.

sprintf('Bit Error Rate is %d\n',errors(1))
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Destroy Cosimulation System Object to Release HDL Simulator

The HDL simulator is unblocked when the HDL cosimulation system object is destroyed
in MATLAB. Close the ModelSim session manually.

clear hDec;

% This concludes the "Verifying Viterbi Decoder Using MATLAB System Object

% and ModelSim" example.
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Start HDL Simulator for Cosimulation in Simulink

In this section...

“Start HDL Simulator from MATLAB” on page 5-2
“Load Instance of HDL Module for Cosimulation” on page 5-2

Start HDL Simulator from MATLAB

Start the HDL simulator directly from MATLAB by calling the HDL Verifier function
vsim or nclaunch.

>>vsim

Note that if both tools (MATLAB and the HDL simulator) are not running on the same
system, you must start the HDL simulator manually and load the HDL Verifier libraries
yourself. See “HDL Verifier Libraries” on page 10-10.

You can call vsim or nclaunch with additional parameters; see the reference pages for
details.

You must make sure the HDL simulator executables — also called vsim (ModelSim) and
nclaunch (Cadence Incisive) — are on the system path. See your system documentation
for instruction on setting environment variables.

Linux Users Make sure the HDL simulator executable is still on the system path after
the shell is launched from MATLAB. If it is not, make sure the shell startup file does not
remove it from the path environment variable.

Load Instance of HDL Module for Cosimulation

Incisive users load an instance of the HDL module for cosimulation using the
hdlsimulink function. ModelSim users do the same using the vsimulink function.

Example of loading HDL Module instance — Incisive users

After you start the HDL simulator from MATLAB, load an instance of an HDL module
for cosimulation with the function hdlsimulink. Issue the command for each instance of
an HDL module in your model that you want to cosimulate.

5-2



 Start HDL Simulator for Cosimulation in Simulink

For example:

hdlsimulink work.manchester

Example of loading HDL Module instance — ModelSim users

After you start the HDL simulator from MATLAB, load an instance of an HDL module
for cosimulation with the function vsimulink. Issue the command for each instance of
an HDL module in your model that you want to cosimulate.

For example:

vsimulink work.manchester

This command opens a simulation workspace for manchester and displays a series of
messages in the HDL simulator command window as the simulator loads the packages
and architectures for the HDL module.
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Run a Simulink Cosimulation Session

In this section...

“Set Simulink Model Configuration Parameters” on page 5-4
“Determine Available Socket Port Number” on page 5-5
“Check Connection Status” on page 5-5
“Run and Test Cosimulation Model” on page 5-5
“Avoid Race Conditions in HDL Simulation with Test Bench Cosimulation and the HDL
Verifier HDL Cosimulation Block” on page 5-8

Set Simulink Model Configuration Parameters

When you create a Simulink model that includes one or more HDL Verifier Cosimulation
blocks, you might want to adjust certain Simulink parameter settings to best meet the
needs of HDL modeling. For example, you might want to adjust the value of the Stop
time parameter in the Solver pane of the Model Configuration Parameters dialog box.

You can adjust the parameters individually or you can use DSP System Toolbox™
Simulink model templates to automatically configure the Simulink environment with the
recommended settings for digital signal processing modeling.

Parameter Default Setting

'SingleTaskRateTransMsg' 'error'

'Solver' 'fixedstepdiscrete'

'EnableMultiTasking' 'off'

'StartTime' '0.0'

'StopTime' 'inf'

'FixedStep' 'auto'

'SaveTime' 'off'

'SaveOutput' 'off'

'AlgebraicLoopMsg' 'error'

The default settings for SaveTime and SaveOutput improve simulation performance.

5-4



 Run a Simulink Cosimulation Session

For more information on DSP System Toolbox Simulink model templates, see the DSP
System Toolbox documentation.

Determine Available Socket Port Number

To determine an available socket number use: ttcp -a a shell prompt.

Check Connection Status

You can check the connection status by clicking the Update diagram button or by
selecting Simulation > Update Diagram. If your have an error in the connection,
Simulink will notify you.

The MATLAB command pingHdlSim can also be used to check the connection status. If
a -1 is returned, then there is no connection with the HDL simulator.

Run and Test Cosimulation Model

In general, the last stage of cosimulation is to run and test your model. There are some
steps you must be aware of when changing your model during or between cosimulation
sessions. You can run the cosimulation in one of three ways:

• “Cosimulation Using the Simulink and HDL Simulator GUIs” on page 5-5
• “Cosimulation with Simulink Using the Command Line Interface (CLI)” on page

5-6
• “Cosimulation with Simulink Using Batch Mode” on page 5-7

Cosimulation Using the Simulink and HDL Simulator GUIs

Start the HDL simulator and load your HDL design. For test bench cosimulation, begin
simulation first in the HDL simulator. Then, in Simulink, click Simulation > Run or
the Run Simulation button. Simulink runs the model and displays any errors that it
detects. You can alternate between the HDL simulator and Simulink GUIs to monitor
the cosimulation results.

For component cosimulation, start the simulation in Simulink first, then begin
simulation in the HDL simulator.

You can specify "GUI" as the property value for the run mode parameter of the HDL
Verifier HDL simulator launch command, but since using the GUI is the default mode for
HDL Verifier, you do not have to.
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Cosimulation with Simulink Using the Command Line Interface (CLI)

Running your cosimulation session using the command-line interface allows you
to interact with the HDL simulator during cosimulation, which can be helpful for
debugging.

To use the CLI, specify "CLI" as the property value for the run mode parameter of the
HDL Verifier HDL simulator launch command.

Caution Close the terminal window by entering quit -f at the command prompt. Do not
close the terminal window by clicking the "X" in the upper right-hand corner. This causes
a memory-type error to be issued from the system. This is not a bug with HDL Verifier
but just the way the HDL simulator behaves in this context.

You can type CTRL+C to interrupt and terminate the simulation in the HDL simulator
but this action also causes the memory-type error to be displayed.

Specify CLI mode with nclaunch (Cadence Incisive)

Issue the nclaunch command with "CLI" as the runmode property value, as follows
(example entered into the MATLAB editor):

 tclcmd = { ['cd ',unixprojdir],...

            ['exec ncvlog -linedebug ',unixsrcfile1],...

             'exec ncelab -access +wc work.inverter_vl',...

             'hdlsimulink -gui work.inverter_vl'

          };

nclaunch('tclstart',tclcmd,'runmode','CLI');

Specify CLI mode with vsim (Mentor Graphics ModelSim)

Issue the vsim command with "CLI" as the runmode property value, as follows (example
entered into the MATLAB editor):

tclcmd = {'vlib work',...

    'vlog addone_vlog.v add_vlog.v top_frame.v',...

    'vsimulink top =socket 5002'};

vsim('tclstart',tclcmd,'runmode','CLI');
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Cosimulation with Simulink Using Batch Mode

Running your cosimulation session in batch mode allows you to keep the process in the
background, reducing demand on memory by disengaging the GUI.

To use the batch mode, specify "Batch" as the property value for the run mode parameter
of the HDL Verifier HDL simulator launch command. After you issue the HDL Verifier
HDL simulator launch command with batch mode specified, start the simulation in
Simulink. To stop the HDL simulator before the simulation is completed, issue the
breakHdlSim command.

Specify Batch mode with nclaunch (Cadence Incisive)

Issue the nclaunch command with 'Batch' as the runmode parameter, as follows:

nclaunch('tclstart',manchestercmds,'runmode','Batch')

You can also set runmode to 'Batch with Xterm', which starts the HDL simulator in
the background but shows the session in an Xterm.

Specify Batch mode with vsim (Mentor Graphics ModelSim)

On Windows, specifying batch mode causes ModelSim to be run in a non-interactive
command window. On Linux, specifying batch mode causes ModelSim to be run in the
background with no window.

Issue the vsim command with 'Batch' as the runmode parameter, as follows:

>> vsim('tclstart',manchestercmds,'runmode','Batch')

Test Cosimulation

If you wish to reset a clock during a cosimulation, you can do so in one of these ways:

• By entering HDL simulator force commands at the HDL simulator command
prompt

• By specifying HDL simulatorforce commands in the Post- simulation command
text field on the Simulation pane of the HDL Verifier Cosimulation block parameters
dialog box.

See also “Clock, Reset, and Enable Signals” on page 10-70.
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If you change any part of the Simulink model, including the HDL Cosimulation block
parameters, update the diagram to reflect those changes. You can do this update in one
of the following ways:

• Rerun the simulation
• Click the Update diagram button
• Select Simulation > Update Diagram

Avoid Race Conditions in HDL Simulation with Test Bench Cosimulation
and the HDL Verifier HDL Cosimulation Block

In the HDL simulator, you cannot control the order in which clock signals (rising-
edge or falling-edge) defined in the HDL Cosimulation block are applied, relative to
the data inputs driven by these clocks. If you are careful to verify the relationship
between the data and active edges of the clock, you can avoid race conditions that could
create differing cosimulation results. See “Race Conditions in HDL Simulators” on page
10-46.
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Simulink as a Test Bench
In this section...

“Communications During Test Bench Cosimulation” on page 6-2
“HDL Cosimulation Block Features for Test Bench Simulation” on page 6-4

Communications During Test Bench Cosimulation

When you link the HDL simulator with a Simulink application, the simulator functions
as the server, as shown in the following figure.

Simulink
Client

HDL Simulator
Server

Out

OutIn

In

Link

Request

Response

In this case, the HDL simulator responds to simulation requests it receives from
cosimulation blocks in a Simulink model. You begin a cosimulation session from
Simulink. After a session is started, you can use Simulink and the HDL simulator to
monitor simulation progress and results. For example, you might add signals to a wave
window to monitor simulation timing diagrams.

As the following figure shows, multiple cosimulation blocks in a Simulink model can
request the service of multiple instances of the HDL simulator, using unique TCP/IP
socket ports.

HDL Simulator
Server

Link

HDL Simulator
Server

Link

Simulink
Client

Port
4449

Port
4448

When you link the HDL simulator with a Simulink application, the simulator functions
as the server. Using the HDL Verifier communications interface, an HDL Cosimulation
block cosimulates a hardware component by applying input signals to and reading output
signals from an HDL model under simulation in the HDL simulator.
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This figure shows a sample Simulink model that includes an HDL Cosimulation block.
The connection is using shared memory.

The HDL Cosimulation block models a Manchester receiver that is coded in HDL. Other
blocks and subsystems in the model include the following:

• Frequency Error Range block, Frequency Error Slider block, and Phase Event block
• Manchester encoder subsystem
• Data alignment subsystem
• Inphase/Quadrature (I/Q) capture subsystem
• Error Rate Calculation block from the Communications System Toolbox™ software
• Bit Errors block
• Data Scope block
• Constellation Diagram block from the Communications System Toolbox software

For information on getting started with Simulink software, see the Simulink online help
or documentation.

How Simulink Drives Cosimulation Signals

Although you can bind the output ports of an HDL Cosimulation block to any signal in
an HDL model hierarchy, you must use some caution when connecting signals to input
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ports. You want to verify that the signal you are binding to does not have other drivers. If
it does, use resolved logic types; otherwise you may get unpredictable results.

If you need to use a signal that has multiple drivers and it is resolved (for example, it
is of VHDL type STD_LOGIC) , Simulink applies the resolution function at each time
step defined by the signal's Simulink sample rate. Depending on the other drivers, the
Simulink value may or may not get applied. Furthermore, Simulink has no control over
signal changes that occur between its sample times.

Note: Verify that signals used in cosimulation have read/write access. You can check
read/write access through the HDL simulator—see HDL simulator documentation for
details.

This rule applies to all signals on the Ports, Clocks, and Simulation panes and to
signals added to the model in any other manner.

Multirate Signals During Test Bench Cosimulation

HDL Verifier software supports the use of multirate signals, signals that are sampled or
updated at different rates, in a single HDL Cosimulation block. An HDL Cosimulation
block exchanges data for each signal at the Simulink sample rate for that signal. For
input signals, an HDL Cosimulation block accepts and honors all signal rates.

The HDL Cosimulation block also lets you specify an independent sample time for each
output port. You must explicitly set the sample time for each output port, or accept the
default. Using this setting lets you control the rate at which Simulink updates an output
port by reading the corresponding signal from the HDL simulator.

Continuous Time Signals

Use the Simulink Zero-Order Hold block to apply a zero-order hold (ZOH) on continuous
signals that are driven into an HDL Cosimulation block.

HDL Cosimulation Block Features for Test Bench Simulation

The HDL Verifier HDL Cosimulation Block links hardware components that are
concurrently simulating in the HDL simulator to the rest of a Simulink model.

You can link Simulink and the HDL simulator in two possible ways:
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• As a single HDL Cosimulation block fitted into the framework of a larger system-
oriented Simulink model.

• As a Simulink model made up of a collection of HDL Cosimulation blocks, each
representing a specific hardware component.

The block mask contains panels for entering port and signal information, setting
communication modes, adding clocks (Incisive and ModelSim only), specifying pre- and
post-simulation Tcl commands (Incisive and ModelSim only), and defining the timing
relationship.

After you code one of your model's components in VHDL or Verilog and simulate it
in the HDL simulator environment, you integrate the HDL representation into your
Simulink model as an HDL Cosimulation block. There is one block for each supported
HDL simulator. These blocks are located in the Simulink Library, within the HDL
Verifier block library. As an example, the block for use with Mentor Graphics® ModelSim
is shown in the next figure.

You configure an HDL Cosimulation block by specifying values for parameters in a block
parameters dialog box. The HDL Cosimulation block parameters dialog box consists of
tabbed panes that specify the following information:

• Ports Pane: Block input and output ports that correspond to signals, including
internal signals, of your HDL design, and an output sample time.

• Connection Pane: Type of communication and related settings to be used for
exchanging data between simulators.

• Timescales Pane: The timing relationship between Simulink software and the HDL
simulator.

• Clocks Pane (Incisive and ModelSim only): Optional rising-edge and falling-edge
clocks to apply to your model.
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• Simulation Pane (Incisive and ModelSim only): Tcl commands to run before and
after a simulation.

For more detail on each of these panes, see the HDL Cosimulation reference page.
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Create a Simulink Cosimulation Test Bench
These steps describe how to cosimulate an HDL design using Simulink software as a test
bench.

1 Create a Simulink test bench model by adding Simulink blocks from the Simulink
block libraries. Run and test your model thoroughly before replacing or adding
hardware model components as Cosimulation blocks.

2 Code HDL module. Compile, elaborate, and simulate your module in your HDL
simulator. See “Code an HDL Component” on page 6-7.

3 Start HDL simulator for use with MATLAB and Simulink and load HDL Verifier
libraries. See “Start HDL Simulator for Cosimulation in Simulink” on page 5-2.

4 Add HDL Cosimulation block to your Simulink test bench model. See “Insert HDL
Cosimulation Block” on page 7-9.

5 Define HDL Cosimulation block interface. See “Configure HDL Cosimulation Block
Interface” on page 6-9.

6 (Optional) Add the To VCD File block to log changes to variable values during a
simulation session. See “Add a Value Change Dump (VCD) File” on page 8-2.

7 Start simulation in HDL simulator first, then run the Simulink model. See “Run a
Simulink Cosimulation Session” on page 5-4.

Code an HDL Component

• “Specify Port Direction Modes in the HDL Component for Test Bench Use” on page
6-7

• “Specify Port Data Types in the HDL Component for Test Bench Use” on page
6-8

• “Compile and Elaborate HDL Design for Test Bench Use” on page 6-9

The HDL Verifier interface passes all data between the HDL simulator and Simulink as
port data. The HDL Verifier software works with any existing HDL module. However,
when you code an HDL module that is targeted for Simulink verification, you should
consider the types of data to be shared between the two environments and the direction
modes.

Specify Port Direction Modes in the HDL Component for Test Bench Use

In your module statement, you must specify each port with a direction mode (input,
output, or bidirectional). The following table defines these three modes.
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Use VHDL Mode... Use Verilog
Mode...

For Ports That...

IN input Represent signals that can be driven by a MATLAB
function

OUT output Represent signal values that are passed to a
MATLAB function

INOUT inout Represent bidirectional signals that can be driven
by or pass values to a MATLAB function

Specify Port Data Types in the HDL Component for Test Bench Use

This section describes how to specify data types compatible with MATLAB for ports in
your HDL modules. For details on how the HDL Verifier interface converts data types for
the MATLAB environment, see “Data Type Conversions” on page 10-49.

Note: If you use unsupported types, the HDL Verifier software issues a warning and
ignores the port at run time. For example, if you define your interface with five ports, one
of which is a VHDL access port, at run time, then the interface displays a warning and
your code sees only four ports.

Port Data Types for VHDL Entities

In your entity statement, you must define each port that you plan to test with MATLAB
with a VHDL data type that is supported by the HDL Verifier software. The interface
can convert scalar and array data of the following VHDL types to comparable MATLAB
types:

• STD_LOGIC, STD_ULOGIC, BIT, STD_LOGIC_VECTOR, STD_ULOGIC_VECTOR, and
BIT_VECTOR

• INTEGER and NATURAL
• REAL

• TIME

• Enumerated types, including user-defined enumerated types and CHARACTER

The interface also supports all subtypes and arrays of the preceding types.
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Note: The HDL Verifier software does not support VHDL extended identifiers for the
following components:

• Port and signal names used in cosimulation
• Enum literals when used as array indices of port and signal names used in

cosimulation

However, the software does support basic identifiers for VHDL.

Port Data Types for Verilog Entities

In your module definition, you must define each port that you plan to test with MATLAB
with a Verilog port data type that is supported by the HDL Verifier software. The
interface can convert data of the following Verilog port types to comparable MATLAB
types:

• reg
• integer
• wire

Note: HDL Verifier software does not support Verilog escaped identifiers for port and
signal names used in cosimulation. However, it does support simple identifiers for
Verilog.

Compile and Elaborate HDL Design for Test Bench Use

Refer to the HDL simulator documentation for instruction in compiling and elaborating
the HDL design.

Configure HDL Cosimulation Block Interface

• “Insert HDL Cosimulation Block” on page 6-10
• “Connect Block Ports” on page 6-11
• “Open HDL Cosimulation Block Parameters” on page 6-11
• “Map HDL Signals to Block Ports” on page 6-12
• “Specify Signal Data Types” on page 6-25
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• “Configure Simulink and HDL Simulator Timing Relationship” on page 6-25
• “Configure Communication Link in the HDL Cosimulation Block” on page 6-28
• “Specify Pre- and Post-Simulation Tcl Commands with HDL Cosimulation Block

Parameters Dialog Box” on page 6-31
• “Programmatically Control Block Parameters” on page 6-34

Insert HDL Cosimulation Block

After you code one of your model's components in VHDL or Verilog and simulate it in
the HDL simulator environment, integrate the HDL representation into your Simulink
model as an HDL Cosimulation block by performing the following steps:

1 Open your Simulink model, if it is not already open.
2 Delete the model component that the HDL Cosimulation block is to replace.
3 In the Simulink Library Browser, click the HDL Verifier block library. You can

then select the block library for your supported HDL simulator. Select either the
Mentor Graphics ModelSim HDL Cosimulation block, or the Cadence Incisive HDL
Cosimulation block, as shown below.

4 Copy the HDL Cosimulation block icon from the Library Browser to your model.
Simulink creates a link to the block at the point where you drop the block icon.
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Connect Block Ports

Connect any HDL Cosimulation block ports to the applicable block ports in your
Simulink model.

• To model a sink device, configure the block with inputs only.
• To model a source device, configure the block with outputs only.

Open HDL Cosimulation Block Parameters

To open the block parameters dialog box for the HDL Cosimulation block, double-click
the block icon. Simulink displays the following Block Parameters dialog box (as an
example, the dialog box for the HDL Cosimulation block for use with ModelSim is shown
below).
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Map HDL Signals to Block Ports

• “Specify HDL Signal/Port and Module Paths for Simulink Test Bench Cosimulation”
on page 6-12

• “Get Signal Information from HDL Simulator” on page 6-14
• “Enter Signal Information Manually” on page 6-20
• “Control Output Port Directly by Value of Input Port” on page 6-24

The first step to configuring your HDL Verifier Cosimulation block is to map signals and
signal instances of your HDL design to port definitions in your HDL Cosimulation block.
In addition to identifying input and output ports, you can specify a sample time for each
output port. You can also specify a fixed-point data type for each output port.

The signals that you map can be at any level of the HDL design hierarchy.

To map the signals, you can perform either of the following actions:

• Enter signal information manually into the Ports pane of the HDL Cosimulation
Block Parameters dialog box. This approach can be more efficient when you want to
connect a small number of signals from your HDL model to Simulink.

• Use the Auto Fill button to have the HDL Cosimulation block obtain signal
information for you by transmitting a query to the HDL simulator. This approach can
save significant effort when you want to cosimulate an HDL model that has many
signals that you want to connect to your Simulink model. However, in some cases, you
will need to edit the signal data returned by the query.

Note: Verify that signals used in cosimulation have read/write access. For higher
performance, you want to provide access only to those signals used in cosimulation.
This rule applies to all signals on the Ports, Clocks, and Simulation panes, and to all
signals added in any other manner.

Specify HDL Signal/Port and Module Paths for Simulink Test Bench Cosimulation

These rules are for signal/port and module path specifications in Simulink. Other
specifications may work but are not explicitly or implicitly supported in this or future
releases.

HDL designs generally do have hierarchy; that is the reason for this syntax. This
specification does not represent a file name hierarchy.
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Path Specifications for Verilog Top Level

• Path specification must start with a top-level module name.
• Path specification can include "." or "/" path delimiters, but cannot include a mixture.
• The leaf module or signal must match the HDL language of the top-level module.

The following examples show valid signal and module path specifications:

top.port_or_sig

/top/sub/port_or_sig

top

top/sub

top.sub1.sub2

The following examples show invalid signal and module path specifications:

• top.sub/port_or_sig

Why this specification is invalid: You cannot use mixed delimiters.
• :sub:port_or_sig

:

:sub

Why this specification is invalid: When you use VHDL-specific delimiters you limit
the interoperability with paths when moving between HDL simulators and between
VHDL and Verilog.

Path Specifications for VHDL Top Level

• Path specification may include the top-level module name but it is not required.
• Path specification can include "." or "/" path delimiters, but cannot include a mixture.
• The leaf module or signal must match the HDL language of the top-level module.

The following examples show valid signal and module path specifications:

top.port_or_sig

/sub/port_or_sig

top

top/sub

top.sub1.sub2
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The following examples show invalid signal and module path specifications:

• top.sub/port_or_sig

Why this specification is invalid: You cannot use mixed delimiters.
• :sub:port_or_sig

:

:sub

Why this specification is invalid: When you use VHDL-specific delimiters you limit
the interoperability with paths when moving between HDL simulators and between
VHDL and Verilog.

Get Signal Information from HDL Simulator

The Auto Fill button lets you begin an HDL simulator query and supply a path to a
component or module in an HDL model under simulation in the HDL simulator. Usually,
some change of the port information is required after the query completes. You must
have the HDL simulator running with the HDL module loaded for Auto Fill to work.

The following example describes the required steps.

Note: The example is based on a modified copy of the Manchester Receiver model, in
which all signals were first deleted from the Ports and Clocks panes.

1 Open the block parameters dialog box for the HDL Cosimulation block. Click the
Ports tab. The Ports pane opens (as an example, the Ports pane for the HDL
Cosimulation block for use with ModelSim is shown in the illustrations below).
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Tip: Delete all ports before performing Auto Fill to make sure that no unused signal
remains in the Ports list at any time.

2 Click the Auto Fill button. The Auto Fill dialog box opens.
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This modal dialog box requests an instance path to a component or module in your
HDL model; here you enter an explicit HDL path into the edit field. The path you
enter is not a file path and has nothing to do with the source files.

3 In this example, the Auto Fill feature obtains port data for a VHDL component called
manchester. The HDL path is specified as /top/manchester. Path specifications
will vary depending on your HDL simulator, see “Specify HDL Signal/Port and
Module Paths for Simulink Component Cosimulation” on page 7-12.

4 Click Fill to dismiss the dialog box and the query is transmitted.
5 After the HDL simulator returns the port data, the Auto Fill feature enters it into

the Ports pane, as shown in the following figure (examples shown for use with
Cadence Incisive).
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6 Click Apply to commit the port additions.
7 Delete unused signals from Ports pane and add Clock signal.

The preceding figure shows that the query entered clock, clock enable, and reset
ports (labeled clk, enable, and reset respectively) into the ports list.

Delete the clk, enable and reset signals from the Ports pane, and add the clk
signal in the Clocks pane.

These actions result in the signals shown in the next figures.
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8 Auto Fill returns default values for output ports:

• Sample time: 1
• Data type: Inherit
• Fraction length: Inherit

You may need to change these values as required by your model. In this example, the
Sample time should be set to 10 for all outputs. See “Specify Signal Data Types”.

9 Before closing the HDL Cosimulation block parameters dialog box, click Apply to
commit any edits you have made.

Observe that Auto Fill returned information about all inputs and outputs for the
targeted component. In many cases, this will include signals that function in the HDL
simulator but cannot be connected in the Simulink model. You may delete any such
entries from the list in the Ports pane if they are unwanted. You can drive the signals
from Simulink; you just have to define their values by laying down Simulink blocks.
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Note that Auto Fill does not return information for internal signals. If your Simulink
model needs to access such signals, you must enter them into the Ports pane manually.
For example, in the case of the Manchester Receiver model, you would need to add output
port entries for top/manchester/sync_i, top/manchester/isum_i, and top/
manchester/qsum_i, as shown in step 8.

Incisive and ModelSim users: Note that clk, reset, and clk_enable may be in the
Clocks and Simulation panes but they don't have to be. These signals can be ports if you
choose to drive them explicitly from Simulink.

Note: When you import VHDL signals using Auto Fill, the HDL simulator returns the
signal names in all capitals.

Enter Signal Information Manually

To enter signal information directly in the Ports pane, perform the following steps:

1 In the HDL simulator, determine the signal path names for the HDL signals you
plan to define in your block. For example, in the ModelSim simulator, the following
wave window shows all signals are subordinate to the top-level module manchester.
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2 In Simulink, open the block parameters dialog box for your HDL Cosimulation block,
if it is not already open.

3 Select the Ports pane tab. Simulink displays the following dialog box (example
shown for use with Incisive).
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In this pane, you define the HDL signals of your design that you want to include
in your Simulink block and set a sample time and data type for output ports. The
parameters that you should specify on the Ports pane depend on the type of device
the block is modeling as follows:

• For a device having both inputs and outputs: specify block input ports, block
output ports, output sample times and output data types.

For output ports, accept the default or enter an explicit sample time. Data types
can be specified explicitly, or set to Inherit (the default). In the default case, the
output port data type is inherited either from the signal connected to the port, or
derived from the HDL model.

• For a sink device: specify block output ports.
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• For a source device: specify block input ports.
4 Enter signal path names in the Full HDL name column by double-clicking on the

existing default signal.

• Use HDL simulator path name syntax (as described in “Specify HDL Signal/Port
and Module Paths for Simulink Test Bench Cosimulation” on page 6-12).

• If you are adding signals, click New and then edit the default values. Select
either Input or Output from the I/O Mode column.

• If you want to, set the Sample Time, Data Type, and Fraction Length
parameters for signals explicitly, as discussed in the remaining steps.

When you have finished editing clock signals, click Apply to register your changes
with Simulink.

The following dialog box shows port definitions for an HDL Cosimulation block.
The signal path names match path names that appear in the HDL simulator wave
window (Incisive example shown).
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Note: When you define an input port, make sure that only one source is set up to
force input to that port. If multiple sources drive a signal, your Simulink model may
produce unpredictable results.

5 You must specify a sample time for the output ports. Simulink uses the value that
you specify, and the current settings of the Timescales pane, to calculate an actual
simulation sample time.

For more information on sample times in the HDL Verifier cosimulation
environment, see “Simulation Timescales” on page 10-57.

6 You can configure the fixed-point data type of each output port explicitly if desired,
or use a default (Inherited). In the default case, Simulink determines the data type
for an output port as follows:

If Simulink can determine the data type of the signal connected to the output port, it
applies that data type to the output port. For example, the data type of a connected
Signal Specification block is known by back-propagation. Otherwise, Simulink
queries the HDL simulator to determine the data type of the signal from the HDL
module.

To assign an explicit fixed-point data type to a signal, perform the following steps:

a Select either Signed or Unsigned from the Data Type column.
b If the signal has a fractional part, enter the Fraction Length.

For example, if the model has an 8-bit signal with Signed data type and a
Fraction Length of 5, the HDL Cosimulation block assigns it the data type
sfix8_En5. If the model has an Unsigned 16-bit signal with no fractional part
(a Fraction Length of 0), the HDL Cosimulation block assigns it the data type
ufix16.

7 Before closing the dialog box, click Apply to register your edits.

Control Output Port Directly by Value of Input Port

Enabling direct feedthrough allows input port value changes to propagate to the output
ports in zero time, thus eliminating the possible delay at output sample in HDL designs
with pure combinational logic. Specify the option to enable direct feedthrough on the
Ports pane, as shown in the following figure.
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Specify Signal Data Types

The Data Type and Fraction Length parameters apply only to output signals.
See Data Type and Fraction Length on the Ports pane description of the HDL
Cosimulation block.

Configure Simulink and HDL Simulator Timing Relationship

You configure the timing relationship between Simulink and the HDL simulator by using
the Timescales pane of the block parameters dialog box. Before setting the Timescales
parameters, read “Simulation Timescales” on page 10-57 to understand the supported
timing modes and the issues that will determine your choice of timing mode.

You can specify either a relative or an absolute timing relationship between Simulink
and the HDL simulator in the Timescales pane, as described in the HDL Cosimulation
block reference.
Simulink and HDL Simulator Timing Relationship

The differences in the representation of simulation time can be reconciled in one of two
ways using the HDL Verifier interface:

• By defining the timing relationship manually (with Timescales pane)

When you define the relationship manually, you determine how many femtoseconds,
picoseconds, nanoseconds, microseconds, milliseconds, seconds, or ticks in the HDL
simulator represent 1 second in Simulink.

This quantity of HDL simulator time can be expressed in one of the following ways:

• In relative terms (i.e., as some number of HDL simulator ticks). In this case, the
cosimulation is said to operate in relative timing mode. The HDL Cosimulation
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block defaults to relative timing mode for cosimulation. For more on relative
timing mode, see “Relative Timing Mode” on page 10-60.

• In absolute units (such as milliseconds or nanoseconds). In this case, the
cosimulation is said to operate in absolute timing mode. For more on absolute
timing mode, see “Absolute Timing Mode” on page 10-65.

For more on relative and absolute time, see “Simulation Timescales” on page
10-57.

• By allowing HDL Verifier to define the timescale (with Timescales pane)

When you allow the link software to define the timing relationship, it attempts to
set the timescale factor between the HDL simulator and Simulink to be as close as
possible to 1 second in the HDL simulator = 1 second in Simulink. If this setting is not
possible, the link product attempts to set the signal rate on the Simulink model port
to the lowest possible number of HDL simulator ticks.

Before you begin, verify that the HDL simulator is running. HDL Verifier software
can get the resolution limit of the HDL simulator only when that simulator is
running.

You can choose to have HDL Verifier calculate a timescale while you are setting
the parameters on the block dialog by clicking the Timescale option then clicking
Determine Timescale Now or you can have HDL Verifier calculate the timescale
when simulation begins by selecting Automatically determine timescale at start
of simulation.
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When you click Determine Timescale Now, HDL Verifier connects Simulink with
the HDL simulator so that it can use the HDL simulator resolution to calculate the
best timescale. You can accept the timescale HDL Verifier suggests or you can make
changes in the port list directly. If you want to revert to the originally calculated
settings, click Use Suggested Timescale. If you want to view sample times for all
ports in the HDL design, select Show all ports and clocks.
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If you select Automatically determine timescale at start of simulation, you get
the same dialog when the simulation starts in Simulink. Make the same adjustments
at that time, if applicable, that you would if you clicked Determine Timescale Now
when you were configuring the block.

Configure Communication Link in the HDL Cosimulation Block

You must select shared memory or socket communication. See “HDL Cosimulation with
MATLAB or Simulink”.
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After you decide which type of communication, configure a block's communication link
with the Connection pane of the block parameters dialog box (example shown for use
with ModelSim).

The following steps guide you through the communication configuration:

1 Determine whether Simulink and the HDL simulator are running on the same
computer. If they are, skip to step 4.

2 Unselect The HDL simulator is running on this computer. (This check box
defaults to selected.) Because Simulink and the HDL simulator are running on
different computers, HDL Verifier sets the Connection method  to Socket.

3 Enter the host name of the computer that is running your HDL simulation (in the
HDL simulator) in the Host name text field. In the Port number or service
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text field, specify a valid port number or service for your computer system. For
information on choosing TCP/IP socket ports, see “TCP/IP Socket Ports” on page
10-77. Skip to step 5.

4 If the HDL simulator and Simulink are running on the same computer,
decide whether you are going to use shared memory or TCP/IP sockets for the
communication channel. For information on the different modes of communication,
see “HDL Cosimulation with MATLAB or Simulink”.

If you choose TCP/IP socket communication, specify a valid port number or
service for your computer system in the Port number or service text field. For
information on choosing TCP/IP socket ports, see “TCP/IP Socket Ports” on page
10-77.

If you choose shared memory communication, select the Shared memory check box.
5 If you want to bypass the HDL simulator when you run a Simulink simulation, use

the Connection Mode options to specify what type of simulation connection you
want. Select one of the following options:

• Full Simulation: Confirm interface and run HDL simulation (default).
• Confirm Interface Only: Check HDL simulator for expected signal names,

dimensions, and data types, but do not run HDL simulation.
• No Connection: Do not communicate with the HDL simulator. The HDL

simulator does not need to be started.

With the second and third options, HDL Verifier software does not communicate
with the HDL simulator during Simulink simulation.

6 Click Apply.

The following example dialog box shows communication definitions for an HDL
Cosimulation block. The block is configured for Simulink and the HDL simulator running
on the same computer, communicating in TCP/IP socket mode over TCP/IP port 4449.
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Specify Pre- and Post-Simulation Tcl Commands with HDL Cosimulation Block Parameters Dialog
Box

You have the option of specifying Tcl commands to execute before and after the HDL
simulator simulates the HDL component of your Simulink model. Tcl is a programmable
scripting language supported by most HDL simulation environments. Use of Tcl
can range from something as simple as a one-line puts command to confirm that a
simulation is running or as complete as a complex script that performs an extensive
simulation initialization and startup sequence. For example, you can use the Post-
simulation command field on the Simulation Pane to instruct the HDL simulator to
restart at the end of a simulation run.
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Note for ModelSim Users After each simulation, it takes ModelSim time to update the
coverage result. To prevent the potential conflict between this process and the next
cosimulation session, add a short pause between each successive simulation.

You can specify the pre-simulation and post-simulation Tcl commands by entering Tcl
commands in the Pre-simulation commands or Post-simulation commands text fields
in the Simulation pane of the HDL Cosimulation block mask.

To specify Tcl commands, perform the following steps:

1 Select the Simulation tab of the Block Parameters dialog box. The dialog box
appears as follows (example shown for use with ModelSim).

The Pre-simulation commands text box includes a puts command for reference
purposes.

2 Enter one or more commands in the Pre-simulation command and Post-
simulation command text boxes. You can specify one Tcl command per line in the
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text box or enter multiple commands per line by appending each command with a
semicolon (;), which is the standard Tcl concatenation operator.

ModelSim DO Files

Alternatively, you can create a ModelSim DO file that lists Tcl commands and then
specify that file with the ModelSim do command as shown in the following figure.

3 Click Apply.
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Programmatically Control Block Parameters

One way to control block parameters is through the HDL Cosimulation block graphical
dialog box. However, you can also control blocks by programmatically controlling the
mask parameter values and the running of simulations. Parameter values can be read
using the Simulink get_param function and written using the Simulink set_param
function. All block parameters have attributes that indicate whether they are:

• Tunable — The attributes can change during the simulation run.
• Evaluated — The parameter value undergoes an evaluation to determine its actual

value used by the S-Function.

The HDL Cosimulation block does not have any tunable parameters; thus, you get an
error if you try to change a value while the simulation is running. However, it does have
a few evaluated parameters.

You can see the list of parameters and their attributes by performing a right-mouse
click on the block, selecting View Mask, and then the Parameters tab. The Variable
column shows the programmatic parameter names. Alternatively, you can get the names
programmatically by selecting the HDL Cosimulation block and then typing the following
commands at the MATLAB prompt:

>> get_param(gcb, 'DialogParameters')

Some examples of using MATLAB to control simulations and mask parameter values
follow. Usually, the commands are put into a script or function file and are called by
several callback hooks available to the model developer. You can place the code in any of
these suggested locations, or anywhere you choose:

• In the model workspace, for example, View > Model Explorer > Simulink Root >
model_name > Model Workspace, option Data Source is set to Model File.

• In a model callback, for example, File > Model Properties > Callbacks.
• A subsystem callback (right-mouse click on an empty subsystem and then select

Properties > Callbacks). Many of the HDL Verifier demos use this technique to
start the HDL simulator by placing MATLAB code in the OpenFcn callback.

• The HDL Cosimulation block callback (right-mouse click on HDL Cosimulation block,
and then select Properties > Callbacks).

Example: Scripting the Value of the Socket Number for HDL Simulator Communication

In a regression environment, you may need to determine the socket number for the
Simulink/HDL simulator connection during the simulation to avoid collisions with other

6-34



 Create a Simulink Cosimulation Test Bench

simulation runs. This example shows code that could handle that task. The script is for a
32-bit Linux platform.
ttcp_exec = [matlabroot '/toolbox/shared/hdllink/scripts/ttcp_glnx'];

 [status, results] = system([ttcp_exec ' -a']);

 if ~s

   parsed_result = textscan(results,'%s');

   avail_port = parsed_result{1}{2};

 else

   error(results);

 end

set_param('MyModel/HDL Cosimulation', 'CommPortNumber', avail_port);
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Verify HDL Module with Simulink Test Bench

In this section...

“Tutorial Overview” on page 6-36
“Develop VHDL Code” on page 6-36
“Compile VHDL Code” on page 6-38
“Create Simulink Model” on page 6-39
“Set Up ModelSim for Use with Simulink” on page 6-48
“Load Instances of VHDL Entity for Cosimulation with Simulink” on page 6-49
“Run Simulation” on page 6-50
“Shut Down Simulation” on page 6-53

Tutorial Overview

This chapter guides you through the basic steps for setting up an HDL Verifier session
that uses Simulink and the HDL Cosimulation block to verify an HDL model. The HDL
Cosimulation block cosimulates a hardware component by applying input signals to and
reading output signals from an HDL model under simulation in ModelSim/Questa®Sim.
The HDL Cosimulation block supports simulation of either VHDL or Verilog models. In
the tutorial in this section, you will cosimulate a simple VHDL model.

Note: This tutorial is specific to Mentor Graphics simulator users; however, much of the
process will be the same for Incisive users.

Develop VHDL Code

A typical Simulink and ModelSim scenario is to create a model for a specific hardware
component in ModelSim that you later need to integrate into a larger Simulink model.
The first step is to design and develop a VHDL model in ModelSim. In this tutorial, you
use ModelSim and VHDL to develop a model that represents the following inverter:
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sin

sout

...10101000

...01010111

8

8

The VHDL entity for this model will represent 8-bit streams of input and output signal
values with an IN port and OUT port of type STD_LOGIC_VECTOR. An input clock signal
of type STD_LOGIC will trigger the bit inversion process when set.

Perform the following steps:

1 Start ModelSim
2 Change to the writable folder MyPlayArea, which you may have created for another

tutorial. If you have not created the folder, create it now. The folder must be
writable.

ModelSim>cd C:/MyPlayArea

3 Open a new VHDL source edit window.
4 Add the following VHDL code:

---------------------------------------------------

--  Simulink and ModelSim Inverter Tutorial

--

--  Copyright 2003-2004 The MathWorks, Inc.

--

---------------------------------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY inverter IS PORT (

  sin : IN  std_logic_vector(7 DOWNTO 0);

  sout: OUT std_logic_vector(7 DOWNTO 0);

  clk : IN  std_logic

);

END inverter;

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ARCHITECTURE behavioral OF inverter IS

BEGIN

  PROCESS(clk)
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  BEGIN

    IF (clk'EVENT AND clk = '1') THEN

      sout <= NOT sin;

    END IF;

  END PROCESS;

END behavioral;

5 Save the file to inverter.vhd.

Compile VHDL Code

This section explains how to set up a design library and compile inverter.vhd, as
follows:

1 Verify that the file inverter.vhd is in the current folder by entering the ls
command at the ModelSim command prompt.

2 Create a design library to hold your compilation results. To create the library and
required _info file, enter the vlib and vmap commands as follows:

ModelSim> vlib work

ModelSim> vmap work work

If the design library work already exists, ModelSim does not overwrite the current
library, but displays the following warning:

# ** Warning: (vlib-34) Library already exists at "work".

Note: You must use the ModelSim File menu or vlib command to create the library
folder so that the required _info file is created. Do not create the library with
operating system commands.

3 Compile the VHDL file. One way of compiling the file is to click the file name in the
project workspace and select Compile > Compile All. Another alternative is to
specify the name of the VHDL file with the vcom command, as follows:

ModelSim> vcom inverter.vhd

If the compilations succeed, informational messages appear in the command window
and the compiler populates the work library with the compilation results.
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Create Simulink Model

Now create your Simulink model. For this tutorial, you create a simple Simulink model
that drives input into a block representing the VHDL inverter you coded in “Develop
VHDL Code” on page 6-36 and displays the inverted output.

Start by creating a model, as follows:

1 Start MATLAB, if it is not already running. Open a new model window. Then, open
the Simulink Library Browser.

2 Drag the following blocks from the Simulink Library Browser to your model
window:

• Constant block from the Simulink Sources library
• HDL Cosimulation block from the HDL Verifier block library
• Display block from the Simulink Sinks library

Arrange the three blocks in the order shown in the following figure.
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Next, configure the Constant block, which is the model's input source, by performing the
following actions:

1 Double-click the Constant block icon to open the Constant block parameters dialog
box. Enter the following parameter values in the Main pane:

• Constant value: 0
• Sample time: 10

Later you can change these initial values to see the effect various sample times have
on different simulation runs.

The dialog box should now appear as follows.
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2 Click the Signal Attributes tab. The dialog box now displays the Output data
type menu.

Select uint8 from the Output data type menu. This data type specification is
supported by HDL Verifier software without the need for a type conversion. It maps
directly to the VHDL type for the VHDL port sin, STD_LOGIC_VECTOR(7 DOWNTO
0).

The dialog box should now appear as follows.
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3 Click OK. The Constant block parameters dialog box closes and the value in the
Constant block icon changes to 0.

Next, configure the HDL Cosimulation block, which represents the inverter model
written in VHDL. Start with the Ports pane, by performing the following actions:

1 Double-click the HDL Cosimulation block icon. The Block Parameters dialog box
for the HDL Cosimulation block appears. Click the Ports tab.

2 In the Ports pane, select the sample signal /top/sig1 from the signal list in the
center of the pane by double-clicking on it.

3 Replace the sample signal path name /top/sig1 with /inverter/sin. Then click
Apply. The signal name on the HDL Cosimulation block changes.

4 Similarly, select the sample signal /top/sig2. Change the Full HDL Name to /
inverter/sout. Select Output from the I/O Mode list. Change the Sample Time
parameter to 10. Then click Apply to update the list.
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5 Select the sample signal /top/sig3. Click the Delete button. The signal is now
removed from the list.

The Ports pane should appear as follows.

Now configure the parameters of the Connection pane by performing the following
actions:

1 Click the Connection tab.
2 Leave Connection Mode as Full Simulation.
3 Select socket from the Connection method  list. This option specifies that Simulink

and ModelSim will communicate via a designated TCP/IP socket port. Observe that
two additional fields, Port number or service and Host name, are now visible.

Note that, because The HDL simulator is running on this computer is selected
by default, the Host name field is disabled. In this configuration, both Simulink and
ModelSim execute on the same computer, so you do not need to enter a remote host
system name.

4 In the Port number or service text box, enter socket port number 4449 or, if this
port is not available on your system, another valid port number or service name. The
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model will use TCP/IP socket communication to link with ModelSim. Note what you
enter for this parameter. You will specify the same socket port information when you
set up ModelSim for linking with Simulink.

The Connection pane should appear as follows.

5 Click Apply.

Now configure the Clocks pane by performing the following actions:

1 Click the Clocks tab.
2 Click the New button. A new clock signal with an empty signal name is added to the

signal list.
3 Double-click on the new signal name to edit. Enter the signal path /inverter/clk.

Then select Rising from the Edge list. Set the Period parameter to 10.
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4 The Clocks pane should appear as follows.

5 Click Apply.

Next, enter some simple Tcl commands to be executed before and after simulation, as
follows:

1 Click the Simulation tab.
2 In the Pre-simulation Tcl commands text box, edit the default Tcl command:

puts "Running inverter in Simulink!"

3 In the Post-simulation Tcl commands text box, edit the default Tcl command:

puts "Inverter Done"
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The Simulation pane should appear as follows.

4 Click Apply.

Next, view the Timescales pane to make sure it is set to its default parameters, as
follows:

1 Click the Timescales tab.
2 The default settings of the Timescales pane are shown in the following figure.

These settings are required for operation of this example. See “Simulation
Timescales” on page 10-57 for further information.
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3 Click OK to close the Block Parameters dialog box.

The final step is to connect the blocks, configure model-wide parameters, and save the
model. Perform the following actions:

1 Connect the blocks as shown in the following figure.
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At this point, you might also want to consider adjusting block annotations.
2 Configure the Simulink solver options for a fixed-step, discrete simulation; this is

required for cosimulation operation. Perform the following actions:

a Select Model Configuration Parameters from the Simulation menu in
the model window. The Model Configuration Parameters dialog box opens,
displaying the Solver options pane.

b Select Fixed-step from the Type menu.
c Select discrete (no continuous states) from the Solver menu.
d Click Apply.
e Click OK to close the Model Configuration Parameters dialog box.

See “Set Simulink Model Configuration Parameters” on page 5-4 for further
information on Simulink settings that are optimal for use with HDL Verifier
software.

3 Save the model.

Set Up ModelSim for Use with Simulink

You now have a VHDL representation of an inverter and a Simulink model that applies
the inverter. To start ModelSim such that it is ready for use with Simulink, enter the
following command line in the MATLAB Command Window:

vsim('socketsimulink', 4449)

Note: If you entered a different socket port specification when you configured the HDL
Cosimulation block in Simulink, replace the port number 4449 in the preceding command
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line with the applicable socket port information for your model. The vsim function
informs ModelSim of the TCP/IP socket to use for establishing a communication link with
your Simulink model.

Load Instances of VHDL Entity for Cosimulation with Simulink

This section explains how to use the vsimulink command to load an instance of your
VHDL entity for cosimulation with Simulink. The vsimulink command is an HDL
Verifier variant of the ModelSim vsim command. It is made available as part of the
ModelSim configuration.

To load an instance of the inverter entity, perform the following actions:

1 Change your input focus to the ModelSim window.
2 If your VHD file is not in the current folder, change your folder to the location of your

inverter.vhd file. For example:

ModelSim> cd C:/MyPlayArea

3 Enter the following vsimulink command:

ModelSim> vsimulink work.inverter

ModelSim starts the vsim simulator such that it is ready to simulate entity
inverter in the context of your Simulink model. The ModelSim command window
display should be similar to the following.
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Run Simulation

This section guides you through a scenario of running and monitoring a cosimulation
session.

Perform the following actions:

1 Open and add the inverter signals to a wave window by entering the following
ModelSim command:

VSIM n> add wave /inverter/*
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The following wave window appears.

2 Change your input focus to your Simulink model window.
3 Start a Simulink simulation. The value in the Display block changes to 255. Also

note the changes that occur in the ModelSim wave window. You might need to zoom
in to get a better view of the signal data.
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4 In the Simulink model, change Constant value to 255, save the model, and start
another simulation. The value in the Display block changes to 0 and the ModelSim
wave window is updated as follows.
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5 In the Simulink model, change Constant value to 2 and Sample time to 20 and
start another simulation. This time, the value in the Display block changes to 253
and the ModelSim wave window appears as shown in the following figure.

Note the change in the sample time in the wave window.

Shut Down Simulation

This section explains how to shut down a simulation in an orderly way, as follows:

1 In ModelSim, stop the simulation by selecting Simulate > End Simulation.
2 Quit ModelSim.
3 Close the Simulink model window.
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Test Bench Automatic Verification with Simulink

The automatic verification feature integrates verification as part of the workflow for
HDL Cosimulation using the HDL Workflow Advisor. During this workflow, Simulink
generates a test bench model for HDL Cosimulation. This test bench model compares the
generated HDL DUT outputs (coming through the HDL Cosimulation block) with the
original Simulink block outputs. The automatic verification step automatically runs this
test bench. This step returns pass/fail information depending if the outputs of the HDL
DUT match the output of original Simulink block in the test bench.

1 Open HDL Workflow Advisor for your model.
2 Step 1.1, select Generic ASIC/FPGA.
3 Run all steps under 2, Prepare Model For HDL Code Generation.
4 At step 3.1.4, Set Testbench Options, select Cosimulation model. Then set

Simulation tool to either Mentor Graphics ModelSim or Cadence Incisive
for your HDL simulator.

5 At Step 3.2, Generate RTL Code and Testbench, select Generate testbench.
This selection causes Step 3.3 to appear.

6-54



 Test Bench Automatic Verification with Simulink

6 At step 3.3, click Run This Task. The HDL Workflow Advisor and HDL Verifier
verify the generated HDL using cosimulation between the HDL Simulator and
the Simulink test bench. Any relevant status messages are displayed in the status
window in the HDL Workflow Advisor.
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Component Simulation with Simulink

In this section...

“How the HDL Simulator and Simulink Software Communicate Using HDL Verifier For
Component Simulation” on page 7-2
“HDL Cosimulation Block Features for Component Simulation” on page 7-4

How the HDL Simulator and Simulink Software Communicate Using HDL
Verifier For Component Simulation

When you link the HDL simulator with a Simulink application, the simulator functions
as the server. As the following diagram shows, the HDL Cosimulation blocks inside
the Simulink model accept signals from the HDL module under simulation in the HDL
simulator via the output ports on the Ports panes and return data via the input ports on
the Ports panes.
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How Simulink Drives Cosimulation Signals

Although you can bind the output ports of an HDL Cosimulation block to any signal in
an HDL model hierarchy, you must use some caution when connecting signals to input
ports. You want to verify that the signal you are binding to does not have other drivers. If
it does, use resolved logic types; otherwise you may get unpredictable results.

If you need to use a signal that has multiple drivers and it is resolved (for example, it
is of VHDL type STD_LOGIC) , Simulink applies the resolution function at each time
step defined by the signal's Simulink sample rate. Depending on the other drivers, the
Simulink value may or may not get applied. Furthermore, Simulink has no control over
signal changes that occur between its sample times.

Note: Verify that signals used in cosimulation have read/write access. You can check
read/write access through the HDL simulator—see HDL simulator documentation for
details.

This rule applies to all signals on the Ports, Clocks, and Simulation panes and to
signals added to the model in any other manner.

Multirate Signals During Component Cosimulation

HDL Verifier software supports the use of multirate signals, signals that are sampled or
updated at different rates, in a single HDL Cosimulation block. An HDL Cosimulation
block exchanges data for each signal at the Simulink sample rate for that signal. For
input signals, an HDL Cosimulation block accepts and honors all signal rates.

The HDL Cosimulation block also lets you specify an independent sample time for each
output port. You must explicitly set the sample time for each output port, or accept the
default. Using this setting lets you control the rate at which Simulink updates an output
port by reading the corresponding signal from the HDL simulator.

Continuous Time Signals

Use the Simulink Zero-Order Hold block to apply a zero-order hold (ZOH) on continuous
signals that are driven into an HDL Cosimulation block.
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HDL Cosimulation Block Features for Component Simulation

The HDL Verifier HDL Cosimulation Block links hardware components that are
concurrently simulating in the HDL simulator to the rest of a Simulink model.

You can link Simulink and the HDL simulator in two possible ways:

• As a single HDL Cosimulation block fitted into the framework of a larger system-
oriented Simulink model.

• As a Simulink model made up of a collection of HDL Cosimulation blocks, each
representing a specific hardware component.

The block mask contains panels for entering port and signal information, setting
communication modes, adding clocks (Incisive and ModelSim only), specifying pre- and
post-simulation Tcl commands (Incisive and ModelSim only), and defining the timing
relationship.

After you code one of your model's components in VHDL or Verilog and simulate it
in the HDL simulator environment, you integrate the HDL representation into your
Simulink model as an HDL Cosimulation block. There is one block for each supported
HDL simulator. These blocks are located in the Simulink Library, within the HDL
Verifier block library. As an example, the block for use with Mentor Graphics ModelSim
is shown in the next figure.

You configure an HDL Cosimulation block by specifying values for parameters in a block
parameters dialog box. The HDL Cosimulation block parameters dialog box consists of
tabbed panes that specify the following information:

• Ports Pane: Block input and output ports that correspond to signals, including
internal signals, of your HDL design, and an output sample time.

• Connection Pane: Type of communication and related settings to be used for
exchanging data between simulators.
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• Timescales Pane: The timing relationship between Simulink software and the HDL
simulator.

• Clocks Pane (Incisive and ModelSim only): Optional rising-edge and falling-edge
clocks to apply to your model.

• Simulation Pane (Incisive and ModelSim only): Tcl commands to run before and
after a simulation.
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Create Simulink Model for Component Cosimulation

For the most part, there is nothing different about creating a Simulink model to act as
an HDL component than there is from creating a Simulink model to use as a test bench.
When using Simulink as a component, you may have multiple HDL Cosimulation blocks
rather than a single HDL Cosimulation block, though there's no limitation on how many
HDL Cosimulation blocks you may use in either situation.

These steps describe how to cosimulate an HDL design that tests the algorithm being
modeled with the Simulink software.

1 Create an HDL design. Compile, elaborate, and simulate your module in your HDL
simulator. See “Code an HDL Component” on page 7-6.

2 Design algorithm and model algorithm in Simulink. Run and test your model
thoroughly before replacing or adding hardware model components as Cosimulation
blocks.

3 Start HDL simulator for use with MATLAB and Simulink and load HDL Verifier
libraries. See “Start HDL Simulator for Cosimulation in Simulink” on page 5-2.

4 Add one or more HDL Cosimulation blocks to provide communication between
simulators. See “Insert HDL Cosimulation Block” on page 7-9.

5 Set the parameters of the HDL Cosimulation block. See “Define HDL Cosimulation
Block Interface” on page 7-8.

6 (Optional) Add the To VCD File block to log changes to variable values during a
simulation session. See “Add a Value Change Dump (VCD) File” on page 8-2.

7 Start running the Simulink model first, then start cosimulation in the HDL
simulator. See “Run a Simulink Cosimulation Session” on page 5-4.

Code an HDL Component

• “Specify Port Direction Modes in HDL Module for Component Simulation” on page
7-7

• “Specify Port Data Types in HDL Module for Component Simulation” on page 7-7
• “Compile and Elaborate HDL Design for Component Simulation” on page 7-8

The HDL Verifier interface passes all data between the HDL simulator and Simulink as
port data. The HDL Verifier software works with any existing HDL module. However,
when you code an HDL module that is targeted for Simulink verification, you should
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consider the types of data to be shared between the two environments and the direction
modes.

Specify Port Direction Modes in HDL Module for Component Simulation

In your module statement, you must specify each port with a direction mode (input,
output, or bidirectional). The following table defines these three modes.

Use VHDL Mode... Use Verilog
Mode...

For Ports That...

IN input Represent signals that can be driven by a MATLAB
function

OUT output Represent signal values that are passed to a
MATLAB function

INOUT inout Represent bidirectional signals that can be driven
by or pass values to a MATLAB function

Specify Port Data Types in HDL Module for Component Simulation

This section describes how to specify data types compatible with MATLAB for ports in
your HDL modules. For details on how the HDL Verifier interface converts data types for
the MATLAB environment, see “Data Type Conversions” on page 10-49.

Note: If you use unsupported types, the HDL Verifier software issues a warning and
ignores the port at run time. For example, if you define your interface with five ports, one
of which is a VHDL access port, at run time, then the interface displays a warning and
your code sees only four ports.

Port Data Types for VHDL Entities

In your entity statement, you must define each port that you plan to test with MATLAB
with a VHDL data type that is supported by the HDL Verifier software. The interface
can convert scalar and array data of the following VHDL types to comparable MATLAB
types:

• STD_LOGIC, STD_ULOGIC, BIT, STD_LOGIC_VECTOR, STD_ULOGIC_VECTOR, and
BIT_VECTOR

• INTEGER and NATURAL
• REAL
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• TIME

• Enumerated types, including user-defined enumerated types and CHARACTER

The interface also supports all subtypes and arrays of the preceding types.

Note: The HDL Verifier software does not support VHDL extended identifiers for the
following components:

• Port and signal names used in cosimulation
• Enum literals when used as array indices of port and signal names used in

cosimulation

However, the software does support basic identifiers for VHDL.

Port Data Types for Verilog Entities

In your module definition, you must define each port that you plan to test with MATLAB
with a Verilog port data type that is supported by the HDL Verifier software. The
interface can convert data of the following Verilog port types to comparable MATLAB
types:

• reg
• integer
• wire

Note: HDL Verifier software does not support Verilog escaped identifiers for port and
signal names used in cosimulation. However, it does support simple identifiers for
Verilog.

Compile and Elaborate HDL Design for Component Simulation

Refer to the HDL simulator documentation for instruction in compiling and elaborating
the HDL design.

Define HDL Cosimulation Block Interface

• “Insert HDL Cosimulation Block” on page 7-9
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• “Connect Block Ports” on page 7-10
• “Open HDL Cosimulation Block Interface” on page 7-10
• “Map HDL Signals to Block Ports” on page 7-11
• “Specify Signal Data Types” on page 7-24
• “Configure Simulink and HDL Simulator Timing Relationship” on page 7-24
• “Configure Communication Link in the HDL Cosimulation Block” on page 7-27
• “Specify Pre- and Post-Simulation Tcl Commands with HDL Cosimulation Block

Parameters Dialog Box” on page 7-30
• “Programmatically Control Block Parameters” on page 7-33

Insert HDL Cosimulation Block

After you code one of your model's components in VHDL or Verilog and simulate it in
the HDL simulator environment, integrate the HDL representation into your Simulink
model as an HDL Cosimulation block by performing the following steps:

1 Open your Simulink model, if it is not already open.
2 Delete the model component that the HDL Cosimulation block is to replace.
3 In the Simulink Library Browser, click the HDL Verifier block library. You can

then select the block library for your supported HDL simulator. Select either the
Mentor Graphics ModelSim HDL Cosimulation block, or the Cadence Incisive HDL
Cosimulation block, as shown below.
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4 Copy the HDL Cosimulation block icon from the Library Browser to your model.
Simulink creates a link to the block at the point where you drop the block icon.

Connect Block Ports

Connect any HDL Cosimulation block ports to the applicable block ports in your
Simulink model.

• To model a sink device, configure the block with inputs only.
• To model a source device, configure the block with outputs only.

Open HDL Cosimulation Block Interface

To open the block parameters dialog box for the HDL Cosimulation block, double-click
the block icon. Simulink displays the following Block Parameters dialog box (as an
example, the dialog box for the HDL Cosimulation block for use with ModelSim is shown
below).
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Map HDL Signals to Block Ports

• “Specify HDL Signal/Port and Module Paths for Simulink Component Cosimulation”
on page 7-12

• “Get Signal Information from the HDL Simulator” on page 7-14
• “Enter Signal Information Manually” on page 7-19
• “Import Signal Information Directly by Value of Input Port” on page 7-23

The first step to configuring your HDL Verifier Cosimulation block is to map signals and
signal instances of your HDL design to port definitions in your HDL Cosimulation block.
In addition to identifying input and output ports, you can specify a sample time for each
output port. You can also specify a fixed-point data type for each output port.

The signals that you map can be at any level of the HDL design hierarchy.
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To map the signals, you can perform either of the following actions:

• Enter signal information manually into the Ports pane of the HDL Cosimulation
Block Parameters dialog box. This approach can be more efficient when you want to
connect a small number of signals from your HDL model to Simulink.

• Use the Auto Fill button to have the HDL Cosimulation block obtain signal
information for you by transmitting a query to the HDL simulator. This approach can
save significant effort when you want to cosimulate an HDL model that has many
signals that you want to connect to your Simulink model. However, in some cases, you
will need to edit the signal data returned by the query.

Note: Verify that signals used in cosimulation have read/write access. For higher
performance, you want to provide access only to those signals used in cosimulation.
This rule applies to all signals on the Ports, Clocks, and Simulation panes, and to all
signals added in any other manner.

Specify HDL Signal/Port and Module Paths for Simulink Component Cosimulation

These rules are for signal/port and module path specifications in Simulink. Other
specifications may work but are not explicitly or implicitly supported in this or future
releases.

HDL designs generally do have hierarchy; that is the reason for this syntax. This
specification does not represent a file name hierarchy.

Path Specifications for Verilog Top Level

• Path specification must start with a top-level module name.
• Path specification can include "." or "/" path delimiters, but cannot include a mixture.
• The leaf module or signal must match the HDL language of the top-level module.

The following examples show valid signal and module path specifications:

top.port_or_sig

/top/sub/port_or_sig

top

top/sub

top.sub1.sub2

The following examples show invalid signal and module path specifications:
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• top.sub/port_or_sig

Why this specification is invalid: You cannot use mixed delimiters.
• :sub:port_or_sig

:

:sub

Why this specification is invalid: When you use VHDL-specific delimiters you limit
the interoperability with paths when moving between HDL simulators and between
VHDL and Verilog.

Path Specifications for VHDL Top Level

• Path specification may include the top-level module name but it is not required.
• Path specification can include "." or "/" path delimiters, but cannot include a mixture.
• The leaf module or signal must match the HDL language of the top-level module.

The following examples show valid signal and module path specifications:

top.port_or_sig

/sub/port_or_sig

top

top/sub

top.sub1.sub2

The following examples show invalid signal and module path specifications:

• top.sub/port_or_sig

Why this specification is invalid: You cannot use mixed delimiters.
• :sub:port_or_sig

:

:sub

Why this specification is invalid: When you use VHDL-specific delimiters you limit
the interoperability with paths when moving between HDL simulators and between
VHDL and Verilog.
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Get Signal Information from the HDL Simulator

The Auto Fill button lets you begin an HDL simulator query and supply a path to a
component or module in an HDL model under simulation in the HDL simulator. Usually,
some change of the port information is required after the query completes. You must
have the HDL simulator running with the HDL module loaded for Auto Fill to work.

The following example describes the required steps.

Note: The example is based on a modified copy of the Manchester Receiver model, in
which all signals were first deleted from the Ports and Clocks panes.

1 Open the block parameters dialog box for the HDL Cosimulation block. Click the
Ports tab. The Ports pane opens (as an example, the Ports pane for the HDL
Cosimulation block for use with ModelSim is shown in the illustrations below).
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Tip: Delete all ports before performing Auto Fill to make sure that no unused signal
remains in the Ports list at any time.

2 Click the Auto Fill button. The Auto Fill dialog box opens.

This modal dialog box requests an instance path to a component or module in your
HDL model; here you enter an explicit HDL path into the edit field. The path you
enter is not a file path and has nothing to do with the source files.

3 In this example, the Auto Fill feature obtains port data for a VHDL component called
manchester. The HDL path is specified as /top/manchester. Path specifications
will vary depending on your HDL simulator, see “Specify HDL Signal/Port and
Module Paths for Simulink Component Cosimulation” on page 7-12.

4 Click Fill to dismiss the dialog box and the query is transmitted.
5 After the HDL simulator returns the port data, the Auto Fill feature enters it into

the Ports pane, as shown in the following figure (examples shown for use with
Cadence Incisive).
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6 Click Apply to commit the port additions.
7 Delete unused signals from Ports pane and add Clock signal.

The preceding figure shows that the query entered clock, clock enable, and reset
ports (labeled clk, enable, and reset respectively) into the ports list.

Delete the clk, enable and reset signals from the Ports pane, and add the clk
signal in the Clocks pane.

These actions result in the signals shown in the next figures.
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8 Auto Fill returns default values for output ports:

• Sample time: 1
• Data type: Inherit
• Fraction length: Inherit

You may need to change these values as required by your model. In this example, the
Sample time should be set to 10 for all outputs. See “Specify Signal Data Types”.

9 Before closing the HDL Cosimulation block parameters dialog box, click Apply to
commit any edits you have made.

Observe that Auto Fill returned information about all inputs and outputs for the
targeted component. In many cases, this will include signals that function in the HDL
simulator but cannot be connected in the Simulink model. You may delete any such
entries from the list in the Ports pane if they are unwanted. You can drive the signals
from Simulink; you just have to define their values by laying down Simulink blocks.
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Note that Auto Fill does not return information for internal signals. If your Simulink
model needs to access such signals, you must enter them into the Ports pane manually.
For example, in the case of the Manchester Receiver model, you would need to add output
port entries for top/manchester/sync_i, top/manchester/isum_i, and top/
manchester/qsum_i, as shown in step 8.

Incisive and ModelSim users: Note that clk, reset, and clk_enable may be in the
Clocks and Simulation panes but they don't have to be. These signals can be ports if you
choose to drive them explicitly from Simulink.

Note: When you import VHDL signals using Auto Fill, the HDL simulator returns the
signal names in all capitals.

Enter Signal Information Manually

To enter signal information directly in the Ports pane, perform the following steps:

1 In the HDL simulator, determine the signal path names for the HDL signals you
plan to define in your block. For example, in the ModelSim simulator, the following
wave window shows all signals are subordinate to the top-level module manchester.
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2 In Simulink, open the block parameters dialog box for your HDL Cosimulation block,
if it is not already open.

3 Select the Ports pane tab. Simulink displays the following dialog box (example
shown for use with Incisive).
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In this pane, you define the HDL signals of your design that you want to include
in your Simulink block and set a sample time and data type for output ports. The
parameters that you should specify on the Ports pane depend on the type of device
the block is modeling as follows:

• For a device having both inputs and outputs: specify block input ports, block
output ports, output sample times and output data types.

For output ports, accept the default or enter an explicit sample time. Data types
can be specified explicitly, or set to Inherit (the default). In the default case, the
output port data type is inherited either from the signal connected to the port, or
derived from the HDL model.

• For a sink device: specify block output ports.
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• For a source device: specify block input ports.
4 Enter signal path names in the Full HDL name column by double-clicking on the

existing default signal.

• Use HDL simulator path name syntax (as described in “Specify HDL Signal/Port
and Module Paths for Simulink Test Bench Cosimulation” on page 6-12).

• If you are adding signals, click New and then edit the default values. Select
either Input or Output from the I/O Mode column.

• If you want to, set the Sample Time, Data Type, and Fraction Length
parameters for signals explicitly, as discussed in the remaining steps.

When you have finished editing clock signals, click Apply to register your changes
with Simulink.

The following dialog box shows port definitions for an HDL Cosimulation block.
The signal path names match path names that appear in the HDL simulator wave
window (Incisive example shown).
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Note: When you define an input port, make sure that only one source is set up to
force input to that port. If multiple sources drive a signal, your Simulink model may
produce unpredictable results.

5 You must specify a sample time for the output ports. Simulink uses the value that
you specify, and the current settings of the Timescales pane, to calculate an actual
simulation sample time.

For more information on sample times in the HDL Verifier cosimulation
environment, see “Simulation Timescales” on page 10-57.

6 You can configure the fixed-point data type of each output port explicitly if desired,
or use a default (Inherited). In the default case, Simulink determines the data type
for an output port as follows:

If Simulink can determine the data type of the signal connected to the output port, it
applies that data type to the output port. For example, the data type of a connected
Signal Specification block is known by back-propagation. Otherwise, Simulink
queries the HDL simulator to determine the data type of the signal from the HDL
module.

To assign an explicit fixed-point data type to a signal, perform the following steps:

a Select either Signed or Unsigned from the Data Type column.
b If the signal has a fractional part, enter the Fraction Length.

For example, if the model has an 8-bit signal with Signed data type and a
Fraction Length of 5, the HDL Cosimulation block assigns it the data type
sfix8_En5. If the model has an Unsigned 16-bit signal with no fractional part
(a Fraction Length of 0), the HDL Cosimulation block assigns it the data type
ufix16.

7 Before closing the dialog box, click Apply to register your edits.

Import Signal Information Directly by Value of Input Port

Enabling direct feedthrough allows input port value changes to propagate to the output
ports in zero time, thus eliminating the possible delay at output sample in HDL designs
with pure combinational logic. Specify the option to enable direct feedthrough on the
Ports pane, as shown in the following figure.
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Specify Signal Data Types

The Data Type and Fraction Length parameters apply only to output signals.
See Data Type and Fraction Length on the Ports pane description of the HDL
Cosimulation block.

Configure Simulink and HDL Simulator Timing Relationship

You configure the timing relationship between Simulink and the HDL simulator by using
the Timescales pane of the block parameters dialog box. Before setting the Timescales
parameters, read “Simulation Timescales” on page 10-57 to understand the supported
timing modes and the issues that will determine your choice of timing mode.

You can specify either a relative or an absolute timing relationship between Simulink
and the HDL simulator in the Timescales pane, as described in the HDL Cosimulation
block reference.
Define Simulink and HDL Simulator Timing Relationship

The differences in the representation of simulation time can be reconciled in one of two
ways using the HDL Verifier interface:

• By defining the timing relationship manually (with Timescales pane)

When you define the relationship manually, you determine how many femtoseconds,
picoseconds, nanoseconds, microseconds, milliseconds, seconds, or ticks in the HDL
simulator represent 1 second in Simulink.

This quantity of HDL simulator time can be expressed in one of the following ways:

• In relative terms (i.e., as some number of HDL simulator ticks). In this case, the
cosimulation is said to operate in relative timing mode. The HDL Cosimulation
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block defaults to relative timing mode for cosimulation. For more on relative
timing mode, see “Relative Timing Mode” on page 10-60.

• In absolute units (such as milliseconds or nanoseconds). In this case, the
cosimulation is said to operate in absolute timing mode. For more on absolute
timing mode, see “Absolute Timing Mode” on page 10-65.

For more on relative and absolute time, see “Simulation Timescales” on page
10-57.

• By allowing HDL Verifier to define the timescale (with Timescales pane)

When you allow the link software to define the timing relationship, it attempts to
set the timescale factor between the HDL simulator and Simulink to be as close as
possible to 1 second in the HDL simulator = 1 second in Simulink. If this setting is not
possible, the link product attempts to set the signal rate on the Simulink model port
to the lowest possible number of HDL simulator ticks.

Before you begin, verify that the HDL simulator is running. HDL Verifier software
can get the resolution limit of the HDL simulator only when that simulator is
running.

You can choose to have HDL Verifier calculate a timescale while you are setting
the parameters on the block dialog by clicking the Timescale option then clicking
Determine Timescale Now or you can have HDL Verifier calculate the timescale
when simulation begins by selecting Automatically determine timescale at start
of simulation.
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When you click Determine Timescale Now, HDL Verifier connects Simulink with
the HDL simulator so that it can use the HDL simulator resolution to calculate the
best timescale. You can accept the timescale HDL Verifier suggests or you can make
changes in the port list directly. If you want to revert to the originally calculated
settings, click Use Suggested Timescale. If you want to view sample times for all
ports in the HDL design, select Show all ports and clocks.
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If you select Automatically determine timescale at start of simulation, you get
the same dialog when the simulation starts in Simulink. Make the same adjustments
at that time, if applicable, that you would if you clicked Determine Timescale Now
when you were configuring the block.

Configure Communication Link in the HDL Cosimulation Block

You must select shared memory or socket communication. See “HDL Cosimulation with
MATLAB or Simulink”.
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After you decide which type of communication, configure a block's communication link
with the Connection pane of the block parameters dialog box (example shown for use
with ModelSim).

The following steps guide you through the communication configuration:

1 Determine whether Simulink and the HDL simulator are running on the same
computer. If they are, skip to step 4.

2 Unselect The HDL simulator is running on this computer. (This check box
defaults to selected.) Because Simulink and the HDL simulator are running on
different computers, HDL Verifier sets the Connection method  to Socket.

3 Enter the host name of the computer that is running your HDL simulation (in the
HDL simulator) in the Host name text field. In the Port number or service
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text field, specify a valid port number or service for your computer system. For
information on choosing TCP/IP socket ports, see “TCP/IP Socket Ports” on page
10-77. Skip to step 5.

4 If the HDL simulator and Simulink are running on the same computer,
decide whether you are going to use shared memory or TCP/IP sockets for the
communication channel. For information on the different modes of communication,
see “HDL Cosimulation with MATLAB or Simulink”.

If you choose TCP/IP socket communication, specify a valid port number or
service for your computer system in the Port number or service text field. For
information on choosing TCP/IP socket ports, see “TCP/IP Socket Ports” on page
10-77.

If you choose shared memory communication, select the Shared memory check box.
5 If you want to bypass the HDL simulator when you run a Simulink simulation, use

the Connection Mode options to specify what type of simulation connection you
want. Select one of the following options:

• Full Simulation: Confirm interface and run HDL simulation (default).
• Confirm Interface Only: Check HDL simulator for expected signal names,

dimensions, and data types, but do not run HDL simulation.
• No Connection: Do not communicate with the HDL simulator. The HDL

simulator does not need to be started.

With the second and third options, HDL Verifier software does not communicate
with the HDL simulator during Simulink simulation.

6 Click Apply.

The following example dialog box shows communication definitions for an HDL
Cosimulation block. The block is configured for Simulink and the HDL simulator running
on the same computer, communicating in TCP/IP socket mode over TCP/IP port 4449.
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Specify Pre- and Post-Simulation Tcl Commands with HDL Cosimulation Block Parameters Dialog
Box

You have the option of specifying Tcl commands to execute before and after the HDL
simulator simulates the HDL component of your Simulink model. Tcl is a programmable
scripting language supported by most HDL simulation environments. Use of Tcl
can range from something as simple as a one-line puts command to confirm that a
simulation is running or as complete as a complex script that performs an extensive
simulation initialization and startup sequence. For example, you can use the Post-
simulation command field on the Simulation Pane to instruct the HDL simulator to
restart at the end of a simulation run.
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Note for ModelSim Users After each simulation, it takes ModelSim time to update the
coverage result. To prevent the potential conflict between this process and the next
cosimulation session, add a short pause between each successive simulation.

You can specify the pre-simulation and post-simulation Tcl commands by entering Tcl
commands in the Pre-simulation commands or Post-simulation commands text fields
in the Simulation pane of the HDL Cosimulation block mask.

To specify Tcl commands, perform the following steps:

1 Select the Simulation tab of the Block Parameters dialog box. The dialog box
appears as follows (example shown for use with ModelSim).

The Pre-simulation commands text box includes a puts command for reference
purposes.

2 Enter one or more commands in the Pre-simulation command and Post-
simulation command text boxes. You can specify one Tcl command per line in the
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text box or enter multiple commands per line by appending each command with a
semicolon (;), which is the standard Tcl concatenation operator.

ModelSim DO Files

Alternatively, you can create a ModelSim DO file that lists Tcl commands and then
specify that file with the ModelSim do command as shown in the following figure.

3 Click Apply.
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Programmatically Control Block Parameters

One way to control block parameters is through the HDL Cosimulation block graphical
dialog box. However, you can also control blocks by programmatically controlling the
mask parameter values and the running of simulations. Parameter values can be read
using the Simulink get_param function and written using the Simulink set_param
function. All block parameters have attributes that indicate whether they are:

• Tunable — The attributes can change during the simulation run.
• Evaluated — The parameter value undergoes an evaluation to determine its actual

value used by the S-Function.

The HDL Cosimulation block does not have any tunable parameters; thus, you get an
error if you try to change a value while the simulation is running. However, it does have
a few evaluated parameters.

You can see the list of parameters and their attributes by performing a right-mouse
click on the block, selecting View Mask, and then the Parameters tab. The Variable
column shows the programmatic parameter names. Alternatively, you can get the names
programmatically by selecting the HDL Cosimulation block and then typing the following
commands at the MATLAB prompt:

>> get_param(gcb, 'DialogParameters')

Some examples of using MATLAB to control simulations and mask parameter values
follow. Usually, the commands are put into a script or function file and are called by
several callback hooks available to the model developer. You can place the code in any of
these suggested locations, or anywhere you choose:

• In the model workspace, for example, View > Model Explorer > Simulink Root >
model_name > Model Workspace, option Data Source is set to Model File.

• In a model callback, for example, File > Model Properties > Callbacks.
• A subsystem callback (right-mouse click on an empty subsystem and then select

Properties > Callbacks). Many of the HDL Verifier demos use this technique to
start the HDL simulator by placing MATLAB code in the OpenFcn callback.

• The HDL Cosimulation block callback (right-mouse click on HDL Cosimulation block,
and then select Properties > Callbacks).

Example: Scripting the Value of the Socket Number for HDL Simulator Communication

In a regression environment, you may need to determine the socket number for the
Simulink/HDL simulator connection during the simulation to avoid collisions with other

7-33



7 Replace HDL Component with Simulink Algorithm

simulation runs. This example shows code that could handle that task. The script is for a
32-bit Linux platform.
ttcp_exec = [matlabroot '/toolbox/shared/hdllink/scripts/ttcp_glnx'];

 [status, results] = system([ttcp_exec ' -a']);

 if ~s

   parsed_result = textscan(results,'%s');

   avail_port = parsed_result{1}{2};

 else

   error(results);

 end

set_param('MyModel/HDL Cosimulation', 'CommPortNumber', avail_port);
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Add a Value Change Dump (VCD) File

In this section...

“Introduction to the To VCD File Block” on page 8-2
“Using the To VCD File Block” on page 8-3

Introduction to the To VCD File Block

A value change dump (VCD) file logs changes to variable values, such as the values
of signals, in a file during a simulation session. VCD files can be useful during design
verification. Some examples of how you might apply VCD files include the following
cases:

• For comparing results of multiple simulation runs, using the same or different
simulator environments

• As input to post-simulation analysis tools
• For porting areas of an existing design to a new design

VCD files can provide data that you might not otherwise acquire unless you understood
the details of a device's internal logic. In addition, they include data that can be
graphically displayed or analyzed with postprocessing tools, including, for example, the
extraction of data about a particular section of a design hierarchy or data generated
during a specific time interval.

Another example, this specifically for ModelSim users, is the ModelSim vcd2wlf tool,
which converts a VCD file to a Wave Log Format (WLF) file that you can view in a
ModelSim wave window.

The To VCD File block provided in the HDL Verifier block library serves as a VCD
file generator during Simulink sessions. The block generates a VCD file that contains
information about changes to signals connected to the block's input ports and names the
file with a specified file name.

Note: The To VCD File block logs changes to states '1' and '0' only. The block does not
log changes to states 'X' and 'Z'.
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Using the To VCD File Block

To generate a VCD file, perform the following steps:

1 Open your Simulink model, if it is not already open.
2 Identify where you want to add the To VCD File block. For example, you might

temporarily replace a scope with this block.
3 In the Simulink Library Browser, click HDL Verifier and then select the block

library for your HDL simulator. You will see the HDL Cosimulation block icon and
the To VCD File block icon.

4 Copy the To VCD File block from the Library Browser to your model by clicking the
block and dragging it from the browser to your model window.

5 Connect the block ports to the applicable blocks in your Simulink model.

Note: Because multidimensional signals are not part of the VCD specification, they
are flattened to a 1-D vector in the file.

6 Configure the To VCD File block by specifying values for parameters in the Block
Parameters dialog box, as follows:

a Double-click the block icon. Simulink displays the following dialog box.
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b Specify a file name for the generated VCD file in the VCD file name text box.

• If you specify a file name only, Simulink places the file in your current
MATLAB folder.

• Specify a complete path name to place the generated file in a different
location.

• If you want the generated file to have a .vcd file type extension, you must
specify it explicitly.

Note: Do not give the same file name to different VCD blocks. Doing so results in
invalid VCD files.
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c Specify an integer in the Number of input ports text box that indicates the
number of block input ports on which signal data is to be collected. The block can
handle up to 943 (830,584) signals, each of which maps to a unique symbol in the
VCD file.

d Click OK.
7 Choose a timing relationship between Simulink and the HDL simulator. The time

scale options specify a correspondence between one second of Simulink time and
some quantity of HDL simulator time. Choose relative time or absolute time. For
more on the To VCD File time scale, see the reference documentation for the To VCD
File block.

8 Run the simulation. Simulink captures the simulation data in the VCD file as the
simulation runs.

For a description of the VCD file format see “VCD File Format”. For a sample application
of a VCD file, see “Visually Compare Simulink Signals with HDL Signals” on page
8-6.
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Visually Compare Simulink Signals with HDL Signals

In this section...

“Tutorial: Overview” on page 8-6
“Tutorial: Instructions” on page 8-6

Tutorial: Overview

Note: This tutorial and the tool used are specific to ModelSim users; however, much of
the process will be the same for Incisive users with a similar tool. See HDL simulator
documentation for details.

VCD files include data that can be graphically displayed or analyzed with postprocessing
tools. An example of such a tool is the ModelSim vcd2wlf tool, which converts a VCD file
to a WLF file that you can then view in a ModelSim wave window. This tutorial shows
how you might apply the vcd2wlf tool.

Tutorial: Instructions

Perform the following steps to view VCD data:

1 Place a copy of the Manchester Receiver Simulink example modelmanchestermodel
in a writable folder.

2 Open your writable copy of the Manchester Receiver model. For example, select
File > Open, select the file manchestermodel and click Open. The Simulink
model should appear as follows. The HDL Cosimulation block is marked “VHDL
Manchester Receiver”.
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Do not follow the numbered steps in the Manchester Receiver model. Follow only the
steps provided in this tutorial.

3 Open the Library Browser.
4 Replace the Signal Scope block with a To VCD File block, as follows:

a Delete the Signal Scope block. The lines representing the signal connections to
that block change to dashed lines, indicating the disconnection.

b Find and open the HDL Verifier block library.
c Click “For Use with Mentor Graphics ModelSim” to access the HDL Verifier

Simulink blocks for use with ModelSim.
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d Copy the To VCD File block from the Library Browser to the model by clicking
the block and dragging it from the browser to the location in your model window
previously occupied by the Signal Scope block.

e Double-click the To VCD File block icon. The Block Parameters dialog box
appears.

f Type MyVCDfile.vcd in the VCD file name text box.
g Type 4 in the Number of input ports text box.

h Click OK. Simulink applies the new parameters to the block.
5 Connect the signals Original Data, Recovered Data, Recovered Clock, and

Data Validity to the block ports. The following display highlights the modified
area of the model.
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6 Save the model.
7 Select the following command line from the instructional text that appears in the

demonstration model:

vsim('tclstart',manchestercmds,'socketsimulink',4442)

8 Paste the command in the MATLAB Command Window and execute the command
line. This command starts ModelSim and configures it for a Simulink cosimulation
session.

9 Open the HDL Cosimulation block parameters dialog box and select the Connection
tab. Change the Connection method to Socket and “4442” for the TCP/IP socket port.
The port you specify here must match the value specified in the call to the vsim
command in the previous step.

10 Start the simulation from the Simulink model window.
11 When the simulation is complete, locate, open, and browse through the generated

VCD file, MyVCDfile.vcd (any text editor will do).
12 Close the VCD file.
13 Change your input focus to ModelSim and end the simulation.
14 Change the current folder to the folder containing the VCD file and enter the

following command at the ModelSim command prompt:

vcd2wlf MyVCDfile.vcd MyVCDfile.wlf

The vcd2wlf utility converts the VCD file to a WLF file that you display with the
command vsim -view.
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15 In ModelSim, open the wave file MyVCDfile.wlf as data set MyVCDwlf by entering
the following command:

vsim -view MyVCDfile.wlf

16 Open the MyVCDwlf data set with the following command:

add wave MyVCDfile:/*

A wave window appears showing the signals logged in the VCD file.
17

Click the Zoom Full button  to view the signal data. The wave window should
appear as follows.

18 Exit the simulation. One way of exiting is to enter the following command:

dataset close MyVCDfile

ModelSim closes the data set, clears the wave window, and exits the simulation.
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For more information on the vcd2wlf utility and working with data sets, see the
ModelSim documentation.
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9 HDL Code Import for Cosimulation

Import HDL Code for Cosimulation

In this section...

“HDL Code Import Features” on page 9-2
“HDL Code Import Workflows” on page 9-3
“Cosimulation Wizard Navigation” on page 9-3
“Cosimulation Wizard Limitations” on page 9-4

HDL Code Import Features

The HDL Verifier Cosimulation Wizard lets you take existing HDL code, from any
source, and use it to create a MATLAB component or test bench function, System object,
or Simulink HDL Cosimulation block. You can then use one of these cosimulation
interfaces for cosimulation with a supported HDL simulator. See “Supported EDA Tools
and Hardware”.

Each cosimulation type workflow requires that you complete the generated cosimulation
interface when the wizard is completed. For example, if you specified a MATLAB
function, the generated script contains some simple port I/O instructions and empty
routines, which you will then need to complete for HDL cosimulation.

What You Need to Know

You are expected to understand the following about the HDL code you want to import:

• The name of the HDL files or compilation scripts to use in creating the block or
function

• For Simulink blocks and MATLAB System objects:

• The name of the top module to be used for cosimulation
• Output port types and sample times
• Whether there are clocks and resets and which of them you want to use, and

timing parameters
• Timescale

• For MATLAB functions:

• Whether you want to create a component function or test bench function, or both
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• How you want to trigger the callback (rising or falling edge, repeat, sensitivity)

For Simulink blocks, you must also have a destination model to receive the newly-
generated block.

What the Cosimulation Wizard Needs to Know

The Cosimulation Wizard guides you through specifying the following types of
information (some information depends on which type of cosimulation interface you want
it to create):

• Type of cosimulation (MATLAB, MATLAB System object, or Simulink)
• Which HDL simulator to use
• HDL files to be included and compilation instructions
• HDL module information
• Callback details
• Input and output port details
• Clock and reset information and HDL simulator start time alignment

HDL Code Import Workflows

To learn more about how to use the Cosimulation Wizard, follow the workflow
documentation specific to the cosimulation interface you want to create:

• “Import HDL Code for MATLAB Function” on page 9-5
• “Import HDL Code for MATLAB System Object” on page 9-16
• “Import HDL Code for HDL Cosimulation Block” on page 9-32

When you are ready to begin:

1 Close the ModelSim or Incisive simulator.
2 Open the Cosimulation Wizard.

Cosimulation Wizard Navigation

On each selection pane there is a status window and navigational options.

• The status window displays the current status of the options you have selected.
Warnings are displayed here also.
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• Click Help to display this HDL Code Import topic.
• Click Cancel to exit the Cosimulation Wizard without creating a cosimulation

component.
• Click Back and Next to navigate forwards and backwards, respectively, through

the application. Note that you can move forwards only after you have provided all
information for the step you are on.

The last step of the Cosimulation Wizard generates the function scripts, System objects,
or blocks and launches the specified HDL simulator.

• If you select a function or System object, the MATLAB Editor opens with the
unfinished script or System object ready for editing.

• If you select a block, Simulink opens with the new block inside an untitled model.

Cosimulation Wizard Limitations

• When creating an HDL Cosimulation block or System object for use with Simulink,
you may access only the I/O ports on the top level of the HDL design. If you want to
cosimulate at multiple levels of your design, you cannot use this application to set up
your HDL Cosimulation block or System object.

• You cannot create multiple HDL Cosimulation blocks, nor can you use multiple
generated HDL Cosimulation blocks in the same model. This is primarily because you
can only access the top level of the HDL design. There is no need for additional blocks.
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Import HDL Code for MATLAB Function
In this section...

“Cosimulation Type—MATLAB Function” on page 9-5
“HDL Files—MATLAB Function” on page 9-7
“HDL Compilation—MATLAB Function” on page 9-8
“HDL Modules—MATLAB Function” on page 9-9
“Callback Schedule—MATLAB Function” on page 9-11
“Script Generation—MATLAB Function” on page 9-13
“Complete the Component or Test Bench Function” on page 9-14

Cosimulation Type—MATLAB Function

If you have not yet done so, invoke the Cosimulation Wizard.

> cosimWizard
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1 In the Cosimulation Type pane, select MATLAB in the field  HDL cosimulation
with to create a MATLAB function template (test bench or component).

2 Select ModelSim or Incisive for the HDL Simulator.
3 Select Use HDL simulator executables on the system path if that is where the

files are located. The Cosimulation Wizard assumes by default that they are on the
system path.

If the HDL simulator executables are not on the system path, select Use the
following HDL simulator executables at the following location and specify
the folder location in the text box below.

If you click Next and the Cosimulation Wizard does not find the executables, the
following occurs:

• You are returned to this dialog and the Cosimulation Wizard displays an error in
the status pane.

• The Cosimulation Wizard switches the option to Use the following HDL
simulator executables at the following location.

• The Cosimulation Wizard makes the HDL simulation path field editable.

You must enter a valid path to the HDL simulator executables before you are
allowed to continue.

4 Click Next.
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HDL Files—MATLAB Function

In the HDL Files pane, specify the files to be used in creating the function or block.

• The Cosimulation Wizard attempts to determine the file type of each file and display
the type in the File List next to the file name. If the Cosimulation Wizard cannot
determine the type or displays the wrong type, you can change the type directly in the
File Type column.

• If possible, the Cosimulation Wizard will determine the compilation order
automatically using HDL simulator provided functionality. This means you can add
the files in any order.

• If you are using ModelSim, you will see compilation scripts listed as .do files
(ModelSim macro file). If you are using Incisive, you will see compilation scripts listed
as system scripts.

1 Click Add to select one or more file names.
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2 Remove files by first highlighting the file name in the File List, then clicking
Remove Selected File.

3 Click Next.

HDL Compilation—MATLAB Function

In the HDL Compilation pane, you can review the generated HDL compilation
commands. You may override and/or customize those commands, if you wish. If you
included compilation scripts instead of HDL files, this pane will show you the command
to run those scripts.

1 Enter any changes to the commands in the Compilation Commands box.

Note: Do not include system shell commands; for example:
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set file = a.vhd vcom $file

When control returns to the Cosimulation Wizard from executing the command, the
variable no longer holds the value that was set. If you do try to include this type of
command, you will see an error in the Status panel.

2 Click Restore default commands to go back to the generated HDL compilation
commands. You are asked to confirm that you want to discard any changes.

3 Click Next to proceed.

HDL Modules—MATLAB Function

In the HDL Module pane, provide the name of the HDL module to be used in
cosimulation.
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1 Enter the name of the module at Name of HDL module to cosimulate with.
2 Specify additional simulation options at Simulation options. For example, in the

previous image, the options shown are:

• HDL simulator resolution
• Turn off optimizations that remove signals from the simulation view

Click Restore Defaults to change the options back to the default.
3 For Connection method, select Shared Memory if your firewall policy does not

allow TCP/IP socket communication.
4 Click Next to proceed to the next step. At this time in the process, the application

performs the following actions in a command window:

• Starts the HDL simulator.
• Loads the HDL module in the HDL simulator.
• Starts the HDL server, and waits to receive notice that the server has started.
• Connects with the HDL server to get the port information.
• Disconnects and shuts down the HDL server.
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Callback Schedule—MATLAB Function

1 In the Callback Schedule pane, enter multiple component or test bench function
callbacks from the HDL simulator. Enter the following information for each callback
function:

• Callback type: select matlabcp to create a component function or matlabtb to
create a test bench function.

• Callback function name (optional): Specify the name of component or
test bench function, if it is not the same as the HDL component. The default
assumption is that the function name is the same as the HDL component name.
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• HDL component: Enter component name manually or browse for it by clicking
Browse.

• Trigger mode: Specify one of the following to trigger the callback function:

• Repeat

• Rising Edge

• Falling Edge

• Sensitivity

• Sample time (ns) or Trigger Signal:

• If you selected trigger Repeat, enter the sample time in nanoseconds.
• If you selected Rising Edge, Falling Edge, or Sensitivity, Sample

time (ns) changes to Trigger Signal. Enter the signal name to be used to
trigger the callback.

You can browse the existing signals in the HDL component you specified by
clicking Browse.

2 Click Add to add the command to the MATLAB Callback Functions list.

If you have more callback functions you want to schedule, repeat the above steps. If
you want to remove any callback functions, highlight the line you want to remove
and click Remove.

Note: If you attempt to add a callback function for the same HDL module as an
existing callback function in the MATLAB Callback Functions list, the new callback
function will overwrite the existing one (this is true even if you change the callback
type). You will see a warning in the Status window:
Warning: This HDL component already has a scheduled callback function, which is

replaced by this new one.

3 Click Next.
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Script Generation—MATLAB Function

1 Click Back to review or change your settings.
2 Click Finish to generate scripts.

Generated Files—MATLAB Function

The Cosimulation Wizard creates the following files and opens each one in a separate
MATLAB Editor windows.

• launchHDLsimulator: script for launching the HDL simulator for cosimulation
with MATLAB.
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• compileHDLDesign: compilation script you can reuse for subsequent compilation of
this particular component.

• Function files (*.m): component and test bench customized function templates, one
for each component specified in the Cosimulation Wizard.

Complete the Component or Test Bench Function

The template that the wizard generates contains some simple port I/O instructions and
empty routines where you add your own code, as shown in the example below. For a full
example of creating and using a MATLAB function, see “Verify Raised Cosine Filter
Design Using MATLAB” on page 9-68.
function osc_top_u_osc_filter1x(obj)

% Automatically generated MATLAB(R) callback function.

% Copyright 2010 The MathWorks, Inc.

% $Revision $

% Initialize state of callback function.

if (strcmp(obj.simstatus,'Init'))

    disp('Initializing states ...');

    % Store port information in userdata

    % The name strings of ports that sends data from HDL simulator to

    % MATLAB callback function

    obj.userdata.FromHdlPortNames = fields(obj.portinfo.out);

    obj.userdata.FromHdlPortNum   = length(fields(obj.portinfo.out));

    % The name strings of ports that sends data from MATLAB callback

    % function to HDL simulator

    obj.userdata.ToHdlPortNames   = fields(obj.portinfo.in);

    obj.userdata.ToHdlPortNum     = length(fields(obj.portinfo.in));

    % Initialize state

    obj.userdata.State = 0;

end

% Obj.tnow is the current HDL simulation time specified in seconds

disp(['Callback function is executed at time ' num2str(obj.tnow)]);

if(obj.userdata.FromHdlPortNum > 0)

    % The name of the first input port

    portName  = obj.userdata.FromHdlPortNames{1};

    disp(['Reading input port ' portName]);

    % Convert the multi-valued logic value of the first port to decimal

    portValueDec  = mvl2dec( ...

        obj.portvalues.(portName), ...      % Multi-valued logic of the first port

        obj.portinfo.out.(portName).size);  %#ok<NASGU> % Bit width

    % Then perform any necessary operations on this value passed by HDL simulator.

    % ...

    % Optionally, you can translate the port value into fixed point object,

    % e.g.

    % myfiobj = fi(portValueDec,1, 16, 4);

end

% Update your state(s). In the following example, we use this internal
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% state to implement a one-bit counter

obj.userdata.State = ~obj.userdata.State;

if(obj.userdata.ToHdlPortNum > 0)

    % The name of the first output port in HDL

    portName = obj.userdata.ToHdlPortNames{1};

    disp(['Writing output port ' portName]);

    % Assign the first port value to internal state obj.userdata.State.

    % Before assignment, convert decimal value to multi-valued logic.

    % You can change obj.userdata.State to another other valid decimal values.

    obj.portvalues.(portName) = dec2mvl(...

        obj.userdata.State, ...

        obj.portinfo.in.(portName).size);

    % Operate on other out ports, if there are any.

    % ...

end
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Import HDL Code for MATLAB System Object

In this section...

“Cosimulation Type—MATLAB System Object” on page 9-16
“HDL Files—MATLAB System Object” on page 9-18
“HDL Compilation—MATLAB System Object” on page 9-20
“Simulation Options—MATLAB System Object” on page 9-21
“Input/Output Ports—MATLAB System Object” on page 9-22
“Output Port Details—MATLAB System Object” on page 9-23
“Clock/Reset Details—MATLAB System Object” on page 9-25
“Start Time Alignment—MATLAB System Object” on page 9-26
“System Object Generation” on page 9-28
“Write System Object Test Bench” on page 9-29
“Run Cosimulation and Verify HDL Design” on page 9-31

Cosimulation Type—MATLAB System Object

If you have not yet done so, , invoke the Cosimulation Wizard.

> cosimWizard
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1 In the Cosimulation Type pane, select MATLAB System object in the field  HDL
cosimulation with.

2 Select ModelSim or Incisive for the HDL Simulator.
3 Select Use HDL simulator executables on the system path if that is where the

files are located. The Cosimulation Wizard assumes by default that they are on the
system path.

If the HDL simulator executables are not on the system path, select Use the
following HDL simulator executables at the following location and specify
the folder location in the text box below.
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If you click Next and the Cosimulation Wizard does not find the executables, the
following occurs:

• You are returned to this dialog and the Cosimulation Wizard displays an error in
the status pane.

• The Cosimulation Wizard switches the option to Use the following HDL
simulator executables at the following location.

• The Cosimulation Wizard makes the HDL simulation path field editable.

You must enter a valid path to the HDL simulator executables before you are
allowed to continue.

4 Click Next.

HDL Files—MATLAB System Object
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In the HDL Files pane, specify the files to be used in creating the function or block.

• The Cosimulation Wizard attempts to determine the file type of each file and display
the type in the File List next to the file name. If the Cosimulation Wizard cannot
determine the type or displays the wrong type, you can change the type directly in the
File Type column.

• If possible, the Cosimulation Wizard will determine the compilation order
automatically using HDL simulator provided functionality. If your simulator does not
include this functionality, add the files in the order they should be compiled.

• If you are using ModelSim, you will see compilation scripts listed as .do files
(ModelSim macro file). If you are using Incisive, you will see compilation scripts listed
as system scripts.

1 Click Add to select one or more file names.
2 Remove files by first highlighting the file name in the File List, then clicking

Remove Selected File.
3 Click Next.
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HDL Compilation—MATLAB System Object

In the HDL Compilation pane, you can review the generated HDL compilation
commands. You may override and/or customize those commands, if you wish. If you
included compilation scripts instead of HDL files, this pane will show you the command
to run those scripts.

1 Enter any changes to the commands in the Compilation Commands box.

Note: Do not include system shell commands; for example:

set file = a.vhd vcom $file
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When control returns to the Cosimulation Wizard from executing the command, the
variable no longer holds the value that was set. If you do try to include this type of
command, you will see an error in the Status panel.

2 Click Restore default commands to go back to the generated HDL compilation
commands. You are asked to confirm that you want to discard any changes.

3 Click Next to proceed.

Simulation Options—MATLAB System Object

In the HDL Module pane, provide the name of the HDL module to be used in
cosimulation.

1 Enter the name of the module at Name of HDL module to cosimulate with.
2 Specify additional simulation options at Simulation options. For example, in the

previous image, the options shown are:

• HDL simulator resolution
• Turn off optimizations that remove signals from the simulation view
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Click Restore Defaults to change the options back to the default.
3 For Connection method, select Shared Memory if your firewall policy does not

allow TCP/IP socket communication.
4 Click Next to proceed to the next step. At this time in the process, the application

performs the following actions in a command window:

• Starts the HDL simulator.
• Loads the HDL module in the HDL simulator.
• Starts the HDL server, and waits to receive notice that the server has started.
• Connects with the HDL server to get the port information.
• Disconnects and shuts down the HDL server.

Input/Output Ports—MATLAB System Object
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1 In the Input/Output Ports pane, specify the type of each input and output port
(Input, Clock, Reset, or Unused).

• The Cosimulation Wizard attempts to determine the port types for you, but you
may override any setting.

• MATLAB forces clock and reset signals in the HDL simulator through Tcl
commands. You can specify clock and reset signal timing in a later step (see
“Clock/Reset Details—MATLAB System Object” on page 9-25).

2 Click Next.

Output Port Details—MATLAB System Object

1 In the Output Port Details pane, set the sample time and data type for all output
ports.
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• Sample time default is 1, the data type default is Inherit and Signed. These
defaults are consistent with the way the HDL Cosimulation block mask (Ports
tab) sets default settings for output ports (Simulink workflow).

• If you select Set all sample times and data types to 'Inherit', the ports
inherit the times via back propagation (sample times are set to -1). However, back
propagation may fail in some circumstances; see “Backpropagation in Sample
Times” (Simulink).

2 Click Next.

9-24



 Import HDL Code for MATLAB System Object

Clock/Reset Details—MATLAB System Object

1 In the Clock/Reset Details pane, set the clock and reset parameters.

• The time period specified here refers to time in the HDL simulator.
• The clock default settings are a rising active edge and a period of 10 ns.
• The reset default settings are an initial value of 0 and a duration of 15 ns.
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The next screen provides a visual display of the simulation start time where you can
review how the clocks and resets line up.

2 Click Next.

Start Time Alignment—MATLAB System Object

1 In the Start Time Alignment pane, review the current settings for clocks and
resets. The purpose for this dialog is twofold:

9-26



 Import HDL Code for MATLAB System Object

• To make sure the rising or falling edge is set as expected (from the previous step)

• Examine the start time. If it coincides with the active edge of the clock, you
need to adjust the HDL simulator start time.

• Examine the reset signal. If it is synchronous with the clock active edge, you
may have a possible race condition.

To avoid a race condition, make sure the start time does not coincide with
the active edge of any clocks. You can do this by moving the start time or by
changing clock active edges in the previous step.

• To make sure the start time is where you want it.

The HDL simulator start time is calculated from the clock and reset values on
the previous pane. If you want, you can change the HDL simulator start time by
entering a new value where you see HDL time to start cosimulation (ns). Click
Update plot to see your change applied.

2 Click Next.
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System Object Generation

1 You can modify the HDL simulator sampling period before the wizard generates the
System object. Enter the new value in the box labeled HDL Simulator sampling
period (ns).

The sampling period determines the elapsed time in the HDL Simulator separating
each call to step in MATLAB. Most of the time the sampling period is equal to the
clock period.

2 If your inputs and outputs are frame based (instead of sample based), select Frame
based processing.

3 Click Finish.

After you click Finish, the wizard generates the following HDL files in the current
directory:
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• compile_hdl_design_design_name.m: Script for recompiling the HDL design
• launch_hdl_simulator_design_name.m: Script for relaunching the MATLAB

System object server and starting the HDL simulator
• hdlcosim_design_name.m: Script for creating the HDLCosimulation System

object

Write System Object Test Bench

Write the test bench for use with the newly generated HDL cosimulation System object.
The test bench you write might look similar to the example shown next.
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For the files used in this example, see .

9-30



 Import HDL Code for MATLAB System Object

Run Cosimulation and Verify HDL Design

1 Launch the HDL simulator by executing the launch script created by the wizard
(launch_hdl_simulator_design_name.m)

2 When the HDL simulator is ready, return to MATLAB and start the simulation by
executing the test bench.

3 Verify the results.
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Import HDL Code for HDL Cosimulation Block

In this section...

“Cosimulation Type—Simulink Block” on page 9-32
“HDL Files—Simulink Block” on page 9-34
“HDL Compilation—Simulink Block” on page 9-36
“Simulation Options—Simulink Block” on page 9-37
“Input/Output Ports—Simulink Block” on page 9-39
“Output Port Details—Simulink Block” on page 9-40
“Clock/Reset Details—Simulink Block” on page 9-42
“Start Time Alignment—Simulink Block” on page 9-43
“Generate Block” on page 9-45
“Complete Simulink Model” on page 9-46

Cosimulation Type—Simulink Block

If you have not yet done so, , invoke the Cosimulation Wizard.

> cosimWizard
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1 In the Cosimulation Type pane, select Simulink in the field  HDL cosimulation
with to instruct the wizard to create a Simulink block.

2 Select ModelSim or Incisive for the HDL Simulator.
3 Select Use HDL simulator executables on the system path if that is where the

files are located. The Cosimulation Wizard assumes by default that they are on the
system path.

If the HDL simulator executables are not on the system path, select Use the
following HDL simulator executables at the following location and specify
the folder location in the text box below.

If you click Next and the Cosimulation Wizard does not find the executables, the
following occurs:

• You are returned to this dialog and the Cosimulation Wizard displays an error in
the status pane.

• The Cosimulation Wizard switches the option to Use the following HDL
simulator executables at the following location.
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• The Cosimulation Wizard makes the HDL simulation path field editable.

You must enter a valid path to the HDL simulator executables before you are
allowed to continue.

4 Click Next.

HDL Files—Simulink Block

In the HDL Files pane, specify the files to be used in creating the function or block.

• The Cosimulation Wizard attempts to determine the file type of each file and display
the type in the File List next to the file name. If the Cosimulation Wizard cannot
determine the type or displays the wrong type, you can change the type directly in the
File Type column.
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• If possible, the Cosimulation Wizard will determine the compilation order
automatically using HDL simulator provided functionality. This means you can add
the files in any order.

• If you are using ModelSim, you will see compilation scripts listed as .do files
(ModelSim macro file). If you are using Incisive, you will see compilation scripts listed
as system scripts.

1 Click Add to select one or more file names.
2 Remove files by first highlighting the file name in the File List, then clicking

Remove Selected File.
3 Click Next.
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HDL Compilation—Simulink Block

In the HDL Compilation pane, you can review the generated HDL compilation
commands. You may override and/or customize those commands, if you wish. If you
included compilation scripts instead of HDL files, this pane will show you the command
to run those scripts.

1 Enter any changes to the commands in the Compilation Commands box.

Note: Do not include system shell commands; for example:

set file = a.vhd vcom $file
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When control returns to the Cosimulation Wizard from executing the command, the
variable no longer holds the value that was set. If you do try to include this type of
command, you will see an error in the Status panel.

2 Click Restore default commands to go back to the generated HDL compilation
commands. You are asked to confirm that you want to discard any changes.

3 Click Next to proceed.

Simulation Options—Simulink Block

In the Simulation Options pane, provide the name of the HDL module to be used in
cosimulation.
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1 Enter the name of the module at Name of HDL module to cosimulate with.
2 Specify additional simulation options at Simulation options. For example, in the

previous image, the options shown are:

• HDL simulator resolution
• Turn off optimizations that remove signals from the simulation view

Click Restore Defaults to change the options back to the default.
3 For Connection method, select Shared Memory if your firewall policy does not

allow TCP/IP socket communication.
4 Click Next to proceed to the next step. At this time in the process, the application

performs the following actions in a command window:

• Starts the HDL simulator.
• Loads the HDL module in the HDL simulator.
• Starts the HDL server, and waits to receive notice that the server has started.
• Connects with the HDL server to get the port information.
• Disconnects and shuts down the HDL server.
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Input/Output Ports—Simulink Block

1 In the Simulink Ports pane, specify the type of each input and output port.

• The Cosimulation Wizard attempts to determine the port types for you, but you
may override any setting.

• For input ports, select Input, Clock, Reset, or Unused.
• For output ports, select Output or Unused.
• Simulink forces clock and reset signals in the HDL simulator through Tcl

commands. You can specify clock and reset signal timing in a later step (see
“Clock/Reset Details—Simulink Block” on page 9-42).
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• To drive your HDL clock and reset signals with Simulink signals, mark them as
Input.

2 Click Next to proceed to “Output Port Details—Simulink Block” on page 9-40.

Output Port Details—Simulink Block

1 In the Output Port Details pane, set the sample time and data type for all output
ports.

• Sample time default is 1, the data type default is Inherit and Signed. These
defaults are consistent with the way the HDL Cosimulation block mask (Ports
tab) sets default settings for output ports.
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• If you select Set all sample times and data types to 'Inherit', the ports
inherit the times via back propagation (sample times are set to -1). However, back
propagation may fail in some circumstances; see “Backpropagation in Sample
Times” (Simulink).

2 Click Next.
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Clock/Reset Details—Simulink Block

1 In the Clock/Reset Details pane, set the clock and reset parameters.

• The time period specified here refers to time in the HDL simulator.
• The clock default settings are a rising active edge and a period of 10 ns.
• The reset default settings are an initial value of 0 and a duration of 15 ns.
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The next screen provides a visual display of the simulation start time where you can
review how the clocks and resets line up.

2 Click Next.

Start Time Alignment—Simulink Block

1 In the Start Time Alignment pane, review the current settings for clocks and
resets. The purpose for this dialog is twofold:
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• To make sure the rising or falling edge is set as expected (from the previous step)

• Examine the start time. If it coincides with the active edge of the clock, you
need to adjust the HDL simulator start time.

• Examine the reset signal. If it is synchronous with the clock active edge, you
may have a possible race condition.

To avoid a race condition, make sure the start time does not coincide with
the active edge of any clocks. You can do this by moving the start time or by
changing clock active edges in the previous step.

• To make sure the start time is where you want it.

The HDL simulator start time is calculated from the clock and reset values on
the previous pane. If you want, you can change the HDL simulator start time by
entering a new value where you see HDL time to start cosimulation (ns). Click
Update plot to see your change applied.

2 Click Next.
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Generate Block

1 Specify if you want HDL Verifier to determine the timescale when you start
the simulation by selecting Automatically determine timescale at start of
simulation. If you prefer to determine the timescale yourself, leave this box
unchecked and enter the timescale value in the text boxes below. The default is to
automatically determine timescale.

For more about timescales, see “Simulation Timescales” on page 10-57.
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2 Click Back to review or change your settings.
3 Click Finish to generate the HDL cosimulation block.

Complete Simulink Model

The Cosimulation Wizard creates a new, untitled mode containing the HDL Cosimulation
block and helper functions to compile HDL and launch the HDL simulator.

1 Copy the HDL Cosimulation block and, if you wish, the helper functions, from the
newly generated model to the destination model.

2 Place the block so that the inputs and outputs to the HDL Cosimulation block line
up.

3 Connect the blocks in the destination model to the HDL Cosimulation block.

When you have completed the model, see “Performing Cosimulation” on page 9-47 for
the next steps in HDL cosimulation.
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Performing Cosimulation

When you are finished creating a function, System object, or block, select the topic below
that describes how you are planning to cosimulate your HDL code.

If you generated this cosimulation interface: Select one of these topics:

MATLAB test bench function (matlabtb) • With a completed test bench, you can
start at the next step: “Place Test Bench
on MATLAB Search Path” on page 2-17

• Review entire test bench function
workflow: “Create a MATLAB Test
Bench” on page 2-2

MATLAB component function (matlabcp) • With a completed component, you can
start at the next step: “Place Component
Function on MATLAB Search Path” on
page 3-10

• Review entire test bench function
workflow: “Create a MATLAB
Component Function” on page 3-2

MATLAB System object With a completed System object, you are
ready to use it for HDL verification. See
“Verify Viterbi Decoder Using MATLAB
System Object and Mentor Graphics
ModelSim” on page 4-3 for an example of
using the MATLAB System object for HDL
cosimulation.

Simulink Block Place your HDL cosimulation block within
a test bench or component model. See
“Create a Simulink Cosimulation Test
Bench” on page 6-7 or “Create Simulink
Model for Component Cosimulation” on
page 7-6.

After you have an HDL cosimulation
model, run the simulation. See “Run a
Simulink Cosimulation Session” on page
5-4.
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You can also view the following examples:

• “Verify Raised Cosine Filter Design Using MATLAB” on page 9-68
• “Verify Raised Cosine Filter Design Using Simulink” on page 9-83
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Cosimulation Wizard for MATLAB System Object

This example guides you through the basic steps for setting up an HDL Verifier™
application using the Cosimulation Wizard.

This example use a MATLAB System object and ModelSim to verify a register transfer
level (RTL) design of a Fast Fourier Transform (FFT) of size 8 written in Verilog. The
FFT is commonly used in digital signal processing to produces frequency distribution of a
signal.

To verify the correctness of this FFT, a MATLAB System object testbench is provided.
This testbench generates a periodic sinusoidal input to the HDL design under test (DUT)
and plots the Fourier Coefficients in the Complex Plane.

The Cosimulation Wizard takes the provided Verilog file of this FFT as its input. It
also collects user input required for setting up cosimulation in each step. At the end of
the example, the Cosimulation Wizard generates a MATLAB script that instantiates a
configured HdlCosimulation System object, a MATLAB script that compiles HDL design,
and a MATLAB script that launches the HDL simulator for cosimulation.

1. Set Up Example Files

To ensure that others can access copies of the example files, set up a folder for your own
example work by following these instructions:

a. Create a folder outside the scope of your MATLAB installation folder into which you
can copy the example files. The folder must be writable. This example assumes that you
create a folder named 'MyTests'.

b. Copy all the files located in the following directory to the folder you created:

matlabroot\toolbox\edalink\foundation\hdllink\demo_src\tutorial_fft

c. You now have all the example files you need in your working directory:

• fft_tb.m
• fft_hdl.v
• fft_hdl_tc.v

2. Launch Cosimulation Wizard

a. Start MATLAB.
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b. Set the directory you created in Set Up Example Files as your current directory in
MATLAB.

c. At the MATLAB command prompt, enter the following:

    >>cosimWizard

The command launches the Cosimulation Wizard.

3. Specify Cosimulation Type

In the Cosimulation Type page, perform the following steps:

a. Change HDL cosimulation with option set to MATLAB System Object.

b. If you are using ModelSim, change HDL Simulator option as ModelSim.

c. Leave the default option Use HDL simulator executables on the system path
option if the HDL simulator executables appear on your system path. If these executable
do not appear on the path, specify the HDL simulator path.

d. Click Next to proceed to the HDL Files page.
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4. Select HDL Files

In the HDL Files page, perform the following steps:

a. Add HDL files to file list:

• Click Add and select the Verilog files fft_hdl.v and fft_hdl_tc.v in your example
folder.
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• Review the files in the file list to make sure the file type is correctly identified.

b. Click Next to proceed to the HDL Compilation page.
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5. Specify HDL Compilation Commands

The Cosimulation Wizard lists the default commands in the Compilation Commands
window. You do not need to change these commands for this example.
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Click Next. The MATLAB console displays the compilation log. If an error occurs during
compilation, that error appears in the Status area. Correct the error before proceeding to
the next step.

6. Select HDL Modules for Cosimulation

In the HDL Modules page, perform the following steps:

a. Specify the name of HDL module/entity for cosimulation. From the drop-down list,
select fft_hdl. This module is the Verilog module you use for cosimulation. If you do not
see "fft_hdl" in the drop-down list, you can enter the file name manually.

b. In the Simulation options field, remove the -novopt option so that ModelSim can
optimize the HDL design.

9-55



9 HDL Code Import for Cosimulation

c. Click Next. The Cosimulation Wizard launches the HDL simulator in the background
console using the specified HDL module and simulation options. If the wizard launches
the HDL simulator successfully, the wizard populates the input and output ports on the
Verilog model fft_hdl and displays them in the next step.

7. Specify Input/Output Port Types

In this step, the Cosimulation Wizard displays two tables containing the input and
output ports of fft_hdl, respectively.
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The Cosimulation Wizard attempts to correctly identify the port type for each port. If the
wizard incorrectly identifies a port, you can change the port type using these tables.

• For input ports, you can select from Clock, Reset, Input, or Unused. HDL Verifier
connects only the input ports marked "Input" to MATLAB during cosimulation.

• HDL Verifier connects output ports marked Output with MATLAB during
cosimulation. The link software and MATLAB ignore those output ports marked
"Unused during cosimulation.

• You can change the parameters for signals identified as "Clock" and "Reset" at a later
step.

Accept the default port types and click Next to proceed to the Output Port Details page.
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8. Specify Output Port Details

For this example, the HDL FFT outputs are signed, 13 bits long with 9 bits of fraction
length. In the Output Port Details page, perform the following steps:

a. Note that the Sample Time can not be changed and is always fixed to 1 with the
HdlCosimulation System object .
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b. Change the Data Type to Signed for both outputs

c. Change the Fraction Length to 9 for both outputs

c. Click Next to proceed to the Clock/Reset Details page.

9. Set Clock and Reset Details

Set the clock Period (ns) to 20. From the Verilog code, you know that the reset is
synchronous and the active value is 1. You can reset the entire HDL design at time 1 ns,
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triggered by the rising edge of the clock. Use a duration of 15 ns for the reset signal. In
the Clock/Reset Details page, perform the following steps:

a. Set clock period to 20.

b. Leave or set active edge to Rising.

c. Leave or set reset initial value to 1.

d. Set reset signal duration to 15.

Click Next to proceed to the Start Time Alignment page.
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10. Confirm Start Time Alignment

The Start Time Alignment page displays a plot for the waveforms of clock and reset
signals. The Cosimulation Wizard shows the HDL time to start cosimulation with a
red line. The start time is also the time at which the System object gets the first input
sample from the HDL simulator. The active edge of clock is a rising edge. Thus, at time
20 ns in the HDL simulator, the registered output of the FFT is stable. No race condition
exists, and the default HDL time to start cosimulation (20 ns) is correct.
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Click Next to proceed to System Object Generation.
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11. Generate System Object

a. Before Cosimulation Wizard generates the scripts, you have the option to modify the
HDL Simulator sampling period. The sampling period determine the elapsed time in the
HDL Simulator separating each call to step in MATLAB. Most of the time the sampling
period is equal to the clock period. You can also specify if your inputs/outputs are frame
based (instead of sample based).

b. Click Finish to complete the Cosimulation Wizard session.
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12. Create Test Bench to Verify HDL Design

For this example, you do not actually create the test bench. Instead, you can find the
finished script fft_tb.m in the directory you created in Set Up Example Files.

a. After you click Finish in the Cosimulation Wizard, the application generates three
HDL files in the current directory:

• compile_hdl_design_fft_hdl.m: To recompile the HDL design
• launch_hdl_simulator_fft_hdl.m: To relaunch the MATLAB System object server

and start the HDL simulator.
• hdlcosim_fft_hdl.m: To create the HdlCosimulation System object

b. Open the files fft_tb.m and hdlcosim_fft_hdl.m, located in the directory you created
in Set Up Example Files and observe the HdlCosimulation System object calls.
hdlcosim_fft_hdl.m contains the HdlCosimulation instanciation and fft_tb.m contains
a MATLAB System object test bench. You will use this test bench to verify the HDL
design for which you just generated a corresponding HdlCosimulation System object .
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13. Run Cosimulation and Verify HDL Design

a. Launch the HDL simulator by executing the script
launch_hdl_simulator_fft_hdl.m.

     >>launch_hdl_simulator_fft_hdl.m

b. When the HDL simulator is ready, return to MATLAB and start the simulation by
executing the script fft_tb.m.

     >>fft_tb.m

c. Verify the result from the plot in the test bench. The plot display the Fourier
Coefficients in the Complex Plane.
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This concludes the Cosimulation Wizard for use with MATLAB System object example.
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Verify Raised Cosine Filter Design Using MATLAB

In this section...

“MATLAB and Cosimulation Wizard Tutorial Overview” on page 9-68
“Tutorial: Set Up Tutorial Files (MATLAB)” on page 9-69
“Tutorial: Launch Cosimulation Wizard (MATLAB)” on page 9-70
“Tutorial: Configure the Component Function with the Cosimulation Wizard” on page
9-70
“Tutorial: Customize Callback Function” on page 9-77
“Tutorial: Run Cosimulation and Verify HDL Design” on page 9-81

MATLAB and Cosimulation Wizard Tutorial Overview

This tutorial guides you through the basic steps for setting up an HDL Verifier
cosimulation that uses MATLAB and the HDL Simulator. This cosimulation verifies an
HDL design using a MATLAB component as the test bench. In this tutorial, you perform
the steps to cosimulate MATLAB with the HDL simulator to verify the suitability of a
raised cosine filter written in Verilog.

Note: This tutorial requires MATLAB, the HDL Verifier software, and the ModelSim
or Incisive HDL simulator. This tutorial also assumes that you have read “Import HDL
Code for MATLAB Function” on page 9-5.

The HDL test bench instantiates two raised-cosine filter components: one is implemented
in HDL, and the other is associated with a MATLAB callback function. The test bench
also generates stimulus to both filters and compares their outputs.
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Tutorial: Set Up Tutorial Files (MATLAB)

To help others access copies of the tutorial files, set up a folder for your own tutorial work
by following these instructions:

1 Create a folder outside the scope of your MATLAB installation folder into which you
can copy the tutorial files. The folder must be writable. This tutorial assumes that
you create a folder named MyTests.

2 Copy all the files located in the following MATLAB folder to the folder you created:
matlabroot\toolbox\edalink\foundation\hdllink\demo_src\tutorial

where matlabroot is the MATLAB root directory on your system.
3 You now have the following files in your working folder:

• filter_tb.v
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• mycallback_solution.m

• rcosflt_beh.v

• rcosflt_rtl.v

• rcosflt_tb.mdl (not used in this tutorial)

Tutorial: Launch Cosimulation Wizard (MATLAB)

1 Start MATLAB.
2 Set the folder you created in “Tutorial: Set Up Tutorial Files (MATLAB)” on page

9-69 as your current folder in MATLAB.
3 At the MATLAB command prompt, enter:

>>cosimWizard

This command launches the Cosimulation Wizard.

Tutorial: Configure the Component Function with the Cosimulation Wizard

This tutorial leads you through the following wizard pages, designed to assist you in
creating an HDL Verifier component function:

• “Tutorial: Specify Cosimulation Type (MATLAB)” on page 9-70
• “Tutorial: Select HDL Files (MATLAB)” on page 9-71
• “Tutorial: Specify HDL Compilation Commands (MATLAB)” on page 9-72
• “Tutorial: Select HDL Modules for Cosimulation (MATLAB)” on page 9-74
• “Tutorial: Specify Callback Schedule” on page 9-75
• “Tutorial: Generate Script” on page 9-76

Tutorial: Specify Cosimulation Type (MATLAB)

In the Cosimulation Type page, perform the following steps:

1 Change HDL cosimulation with option set to MATLAB.
2 If you are using ModelSim, leave HDL Simulator option as ModelSim.

If you are using Incisive, change HDL Simulator option to Incisive.
3 Leave the default option Use HDL simulator executables on the system path

option if the HDL simulator executables appear on your system path.
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If the executables do not appear in the path, specify the HDL simulator path as
described in “Cosimulation Type—MATLAB Function” on page 9-5.

4

5 Click Next to proceed to the HDL Files page.

Tutorial: Select HDL Files (MATLAB)

In the HDL Files page, perform the following steps:

1 Add HDL files to file list.

a Click Add and browse to the directory you created in “Tutorial: Set Up Tutorial
Files (MATLAB)” on page 9-69.

b Select the Verilog files filter_tb.v, rcosflt_rtl.v, and rcosflt_beh.v.
You can select multiple files in the file browser by holding down the CTRL key
while selecting the files with the mouse.

c Review the file in the file list with the file type identified as you expected.
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2 Click Next to proceed to the HDL Compilation page.

Tutorial: Specify HDL Compilation Commands (MATLAB)

Cosimulation Wizards lists the default commands in the Compilation Commands
window. You do not need to change these defaults for this tutorial.

1 Examine compilation commands.

a ModelSim users: Your HDL Compilation pane looks similar to the following.
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b Incisive users: Your HDL Compilation commands will look similar to the
following:

ncvlog -update "/mathworks/home/user/MyTests/filter_tb.v"

ncvlog -update "/mathworks/home/user/MyTests/rcosflt_beh.v"

ncvlog -update "/mathworks/home/user/MyTests/rcosftl_rtl.v"

2 Click Next to proceed to the HDL Modules pane.

The MATLAB console displays the compilation log. If an error occurs during
compilation, that error appears in the Status area. Change whatever settings you
can to remove the error before proceeding to the next step.
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Tutorial: Select HDL Modules for Cosimulation (MATLAB)

In the HDL Modules pane, perform the following steps:

1 Specify the name of the HDL module/entity for cosimulation.

At Name of HDL module to cosimulate with, select filter_tb from the drop-
down list to specify the Verilog module you will use for cosimulation.

If you do not see filter_tb in the drop-down list, you can enter it manually.
2 For Connection method, select Shared Memory if your firewall policy does not

allow TCP/IP socket communication.
3 Click Next to proceed to the Callback Schedule page.
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Cosimulation Wizard launches the HDL simulator in the background console using
the specified HDL module and simulation options. After the wizard launches the
HDL simulator, the Callback Schedule page appears. On Windows systems, the
console remains open. Do not close the console; the application closes this window
upon completion.

Tutorial: Specify Callback Schedule

In the Callback Schedule page, perform the following steps:

1 Leave Callback type as matlabcp (default). This type instructs the Cosimulation
Wizard to create a MATLAB callback function as a component for cosimulation with
the HDL simulator.

2 Leave Callback function name as callback_fcn. The wizard gives this name to
the generated MATLAB callback function.

3 For HDL component, click Browse. Click the expander icon next to filter_tb
to expand the selection. Select u_rcosflt_beh, and click OK. You have specified to
the Cosimulation Wizard that the HDL simulator associate this component with the
MATLAB callback function.

4 Set Trigger mode to Rising Edge.
5 For Trigger Signal, click Browse. Click the expander icon next to filter_tb to

expand the selection. Select u_rcosflt_beh. In the ports list on the right, select
clk. Click OK.

6 Click Add. The Cosimulation Wizard generates the corresponding matlabcp
command that associates the HDL module u_rcosflt_beh with the MATLAB function
callback_fcn, as shown in the following image:
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For more information on the callback parameters, see the reference page for
matlabcp.

7 Click Next to proceed to the Generate Script page.

Tutorial: Generate Script

1 Leave Launch HDL simulator after exiting this dialog selected.
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2 Click Finish to complete the Cosimulation Wizard session and generate scripts.

Tutorial: Customize Callback Function

After you click Finish in the Cosimulation Wizard, the application generates three HDL
files in the current directory:

• compile_hdl_design.m: For recompiling the HDL design
• launch_hdl_simulator.m: To relaunch the MATLAB server and start the HDL

simulator.
• callback_fcn.m: The MATLAB callback function

In addition to launching the HDL simulator, HDL Verifier software opens the MATLAB
Editor and loads callback_fcn.m (partial image shown).
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The generated template comprises four parts:

• Initialize internal state(s) of callback function
• Read signal from HDL component
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• Write signal to HDL component
• Update internal state(s)

You modify this template to model a raised cosine filter in MATLAB following the
instructions as shown in the following sections.

• “Tutorial: Define Internal States” on page 9-79
• “Tutorial: Read Signal from HDL Component” on page 9-80
• “Tutorial: Write Signal to HDL Component” on page 9-80
• “Tutorial: Update Internal States” on page 9-80

Note: You can find a completed modified callback function in mycallback_solution.m.
This function resides in the directory you copied the tutorial files into. You can use this
file to overwrite the one in your current directory. Name the file "callback_fcn.m", and
change the function name to callback_fcn.

Tutorial: Define Internal States

Define two internal states: a 49-element vector to hold filter inputs and a vector of filter
coefficients.

Edit callback_fcn.m so that the internal state section contains the following code:
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Tutorial: Read Signal from HDL Component

Read the filter input and convert it to a decimal number in MATLAB.

Edit callback_fcn.m so that the read signal section contains the following code:

Tutorial: Write Signal to HDL Component

The input "reset" signal controls the filter output. If reset is low, then the output is the
product of previous inputs and filter coefficients. MATLAB converts the decimal result to
a multivalued logic output of the HDL component.

Edit callback_fcn.m so that the write signal section contains the following code:

Tutorial: Update Internal States

Use the filter input to update the internal 49-element state.

Edit callback_fcn.m so that the update internal states section contains the following
code:
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Tutorial: Run Cosimulation and Verify HDL Design

Switch to the HDL simulator and enter the following command in the HDL simulator
console:

run 200 ns

You see the following output displayed in the HDL simulator:
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These messages indicate that the output of the HDL component matches the behavioral
output of the MATLAB component.

9-82



 Verify Raised Cosine Filter Design Using Simulink

Verify Raised Cosine Filter Design Using Simulink

In this section...

“Simulink and Cosimulation Wizard Tutorial Overview” on page 9-83
“Tutorial: Set Up Tutorial Files (Simulink)” on page 9-84
“Tutorial: Launch Cosimulation Wizard (Simulink)” on page 9-84
“Tutorial: Configure the HDL Cosimulation Block with the Cosimulation Wizard” on
page 9-84
“Tutorial: Create Test Bench to Verify HDL Design” on page 9-97
“Tutorial: Run Cosimulation and Verify HDL Design” on page 9-99

Simulink and Cosimulation Wizard Tutorial Overview

This tutorial guides you through the basic steps for setting up an HDL Verifier
application that uses Simulink and the HDL simulator to verify an HDL design, using a
Simulink model as the test bench. In this tutorial, you perform the steps to cosimulate
Simulink and the HDL simulator to verify a simple raised cosine filter written in Verilog.

Note: This tutorial requires Simulink, the HDL Verifier software, and the ModelSim or
Incisive HDL simulator. This tutorial assumes that you have read “Import HDL Code for
HDL Cosimulation Block” on page 9-32.

In this tutorial, you perform the following steps:

1 “Tutorial: Set Up Tutorial Files (Simulink)” on page 9-84
2 “Tutorial: Launch Cosimulation Wizard (Simulink)” on page 9-84
3 “Tutorial: Configure the HDL Cosimulation Block with the Cosimulation Wizard” on

page 9-84
4 “Tutorial: Create Test Bench to Verify HDL Design” on page 9-97
5 “Tutorial: Run Cosimulation and Verify HDL Design” on page 9-99
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Tutorial: Set Up Tutorial Files (Simulink)

To help others access copies of the tutorial files, set up a folder for your own tutorial work
by following these instructions:

1 Create a folder outside the scope of your MATLAB installation folder into which you
can copy the tutorial files. The folder must be writable. This tutorial assumes that
you create a folder named MyTests.

2 Copy all the files located in the following directory to the folder you created:
matlabroot\toolbox\edalink\foundation\hdllink\demo_src\tutorial

where matlabroot is the MATLAB root directory on your system.
3 You now have all the following files in your working directory, although, for this

tutorial, you will need only two of them:

• filter_tb.v  (not used for this tutorial)
• mycallback_solution.m (not used for this tutorial)
• rcosflt_beh.v (not used for this tutorial)
• rcosflt_rtl.v

• rcosflt_rtl.vhd

• rcosflt_tb.mdl

Tutorial: Launch Cosimulation Wizard (Simulink)

1 Start MATLAB.
2 Set the directory you created in “Tutorial: Set Up Tutorial Files (Simulink)” on page

9-84 as your current directory in MATLAB.
3 At the MATLAB command prompt, enter the following:

>>cosimWizard

The command launches the Cosimulation Wizard.

Tutorial: Configure the HDL Cosimulation Block with the Cosimulation
Wizard

This tutorial leads you through the following wizard pages, designed to assist you in
creating an HDL Cosimulation block.
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• “Tutorial: Specify Cosimulation Type (Simulink)” on page 9-85
• “Tutorial: Select HDL Files (Simulink)” on page 9-86
• “Tutorial: Specify HDL Compilation Commands (Simulink)” on page 9-87
• “Tutorial: Select Simulation Options for Cosimulation (Simulink)” on page 9-89
• “Tutorial: Specify Port Types” on page 9-91
• “Tutorial: Specify Output Port Details” on page 9-92
• “Tutorial: Set Clock and Reset Details” on page 9-93
• “Tutorial: Confirm Start Time Alignment” on page 9-94
• “Tutorial: Generate Block” on page 9-96

Tutorial: Specify Cosimulation Type (Simulink)

In the Cosimulation Type page, perform the following steps:

1 Leave HDL cosimulation with option set to Simulink.
2 If you are using ModelSim, leave HDL Simulator option as ModelSim.

If you are using Incisive, change HDL Simulator option to Incisive.
3 Leave the default option Use HDL simulator executables on the system path

option if the HDL simulator executables appear on your system path.

If these executable do not appear on the path, specify the HDL simulator path as
described in “Cosimulation Type—Simulink Block” on page 9-32.
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4 Click Next to proceed to the HDL Files page.

Tutorial: Select HDL Files (Simulink)

In the HDL Files page, perform the following steps:

1 Add HDL files to file list.

a Click Add and browse to the directory you created in “Tutorial: Set Up Tutorial
Files (Simulink)” on page 9-84.

b For Verilog, select rcosflt_rtl.v. For VHDL, select rcosflt_rtl.vhd.
c Review the file in the file list with the file type identified as you expected.
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2 Click Next to proceed to the HDL Compilation page.

Tutorial: Specify HDL Compilation Commands (Simulink)

The Cosimulation Wizard lists the default commands in the Compilation Commands
window. You do not need to change these commands for this tutorial.

When you run the Cosimulation Wizard with your own code, you may add or change the
compilation commands in this window. For example, you can add the -vlog01compat
switch.

ModelSim users: The HDL Compilation pane will look similar to the one in this figure:
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Incisive users: Your HDL Compilation pane will look similar to the one in the following
figure.
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Click Next to proceed to the HDL Modules pane.

The MATLAB console displays the compilation log. If an error occurs during compilation,
that error appears in the Status area. Change whatever settings you can to remove the
error before proceeding to the next step.

Tutorial: Select Simulation Options for Cosimulation (Simulink)

In the Simulation Options pane, perform the following steps:

1 Specify the name of HDL module/entity for cosimulation.

From the drop-down list, select rcosflt_rtl. This module is the Verilog/VHDL
module you use for cosimulation.

If you do not see rcosflt_rtl in the drop-down list, you can enter the file name
manually.

2 For Connection method, select Shared Memory if your firewall policy does not
allow TCP/IP socket communication.

The simulation options now look similar to those shown in the next figure.
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Incisive users: Your HDL Module options look similar to the following figure

3 Click Next to proceed to the Simulink Ports pane.

The Cosimulation Wizard launches the HDL simulator in the background console
using the specified HDL module and simulation options. After the wizard launches
the HDL simulator, the wizard populates the input and output ports on the Verilog/
VHDL model rcosflt_rtl and displays them in the next step.
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Tutorial: Specify Port Types

In this step, the Cosimulation Wizard displays two tables containing the input and
output ports of rcosflt_rtl, respectively.

The Cosimulation Wizard attempts to identify the port type for each port. If the wizard
incorrectly identifies a port, you can change the port type using these tables.

• For input ports, you can select from Clock, Reset, Input, or Unused. HDL Verifier
connects only the input ports marked Input to Simulink during cosimulation.

• HDL Verifier connects output ports marked Output with Simulink during
cosimulation. The wizard and Simulink ignore those output ports marked Unused
during cosimulation.

• You can change the parameters for signals identified as Clock and Reset at a later
step.
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Accept the default port types and click Next to proceed to the Output Port Details
page.

Tutorial: Specify Output Port Details

In the Output Port Details page, perform the following steps:

1 Set the sample time of filter_out to -1 to inherit via back propagation.
2 You can see from the Verilog code that the Cosimulation Wizard represents the

output in a S34,29 format. Change the following fields:

• Data Type to Fixedpoint
• Sign to Signed
• Fraction Length to 29

. Your results now look similar to the following image.
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3 Click Next to proceed to the Clock/Reset Details page.

Tutorial: Set Clock and Reset Details

For this tutorial, set the clock Period (ns) to 20. From the Verilog code, you know that
the reset is synchronous and the active value is 1. You can reset the entire HDL design at
time 1 ns, triggered by the rising edge of the clock. Use a duration of 15 ns for the reset
signal.

In the Clock/Reset Details page, perform the following steps:

1 Set clock period to 20.
2 Leave or set active edge to Rising.
3 Leave or set reset initial value to 1.
4 Set reset signal duration to 15.

Your clock and reset are now the same as those same signals shown in the following
figure.
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5 Click Next to proceed to the Start Time Alignment page.

Tutorial: Confirm Start Time Alignment

The Start Time Alignment page displays a plot for the waveforms of clock and reset
signals. The Cosimulation Wizard shows the HDL time to start cosimulation with a red
line. The start time is also the time at which the Simulink gets the first input sample
from the HDL simulator.
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1 Set or confirm Start Time Alignment

The active edge of our clock is a rising edge. Thus, at time 20 ns in the HDL
simulator, the registered output of the raised cosine filter is stable. No race condition
exists, and the default HDL time to start cosimulation (20 ns) is what we want for
this simulation. You do not need to make any changes to the start time.

2 Click Next to proceed to Block Generation.
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Tutorial: Generate Block

Before you generate the HDL Cosimulation block, you have the option to determine the
timescale before you finish the Cosimulation Wizard. Alternately, you can instruct HDL
Verifier to calculate a timescale later. Timescale calculation by the verification software
occurs after you connect all the input/output ports of the generated HDL Cosimulation
block and start simulation.

1 Leave Automatically determine timescale at start of simulation selected
(default). Later, you will have the opportunity to view the calculated timescale and
change that value before you begin simulation.

2 Click Finish to complete the Cosimulation Wizard session.
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Tutorial: Create Test Bench to Verify HDL Design

For this tutorial, you do not actually create the test bench. Instead, you can find the
finished model (rcosflt_tb.mdl) in the directory you created in “Tutorial: Set Up
Tutorial Files (Simulink)” on page 9-84.

1 After you click Finish in the Cosimulation Wizard, Simulink creates a model and
populates it with the following items:

• An HDL Cosimulation block
• A block to recompile the HDL design (contains a link to a script that is launched

by double-clicking the block)
• A block to launch the HDL simulator (contains a link to a script that is launched

by double-clicking the block)

Leave the model for the moment and proceed to the next step.
2 Open the file rcosflt_tb, located in the directory you created in “Tutorial: Set Up

Tutorial Files (Simulink)” on page 9-84.

This file contains a model of a Simulink test bench. You will use this test bench
to verify the HDL design for which you just generated a corresponding HDL
Cosimulation block.
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3 Add the HDL Cosimulation block to the test bench model as follows:

a Copy the HDL Cosimulation block from the newly generated model to this test
bench model.

b Place the block so that the constant and convert blocks line up as inputs to the
HDL Cosimulation block and the bus lines up as output.

c Connect the blocks in the test bench to the HDL Cosimulation block.
4 Copy the script blocks to the area below the test bench. Your model now looks similar

to that in the following figure.

5 Save the model.
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Tutorial: Run Cosimulation and Verify HDL Design

1 Launch the HDL simulator by double-clicking the block labeled Launch HDL
Simulator.

2 When the HDL simulator is ready, return to Simulink and start the simulation.
3 Determine timescale.

Recall that you selected Automatically determine timescale at start of
simulation option on the last page of the Cosimulation Wizard. Because you did so,
HDL Verifier launches the Timescale Details GUI instead of starting the simulation.

Both the HDL simulator and Simulink sample the filter_in and filter_out
ports at 1 second. However, their sample time in the HDL simulator should be the
same as the clock period (2 ns).

a Change the Simulink sample time of /rcosflt_rtl/filter_in to 1 (seconds),
and press Enter. The wizard then updates the table. The following figure shows
the new timescale: 1 second in Simulink corresponds to 2e-008 s in the HDL
simulator.
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b Click OK to exit Timescale Details.
4 Restart simulation.
5 Verify the result from the scope in the test bench model. The scope displays both the

delayed version of input to raised cosine filter and that filter's output. If you sample
the output of this filter output directly, no inter-symbol-interference occurs
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This step concludes the Cosimulation Wizard for use with Simulink tutorial.
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Help Button

In this section...

“Cosimulation Type” on page 9-102
“HDL Files” on page 9-104
“HDL Compilation” on page 9-105
“HDL Modules” on page 9-106

Cosimulation Type

1 Select your HDL Cosimulation workflow in the field  HDL cosimulation with:
Simulink, MATLAB, or MATLAB System Object. This setting instructs the wizard
to create a block, function template, or System object, respectively.

2 Select the HDL simulator you want to use: ModelSim or Incisive.
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3 Select Use HDL simulator executables on the system path if that is where the
files are located. The Cosimulation Wizard assumes by default that they are on the
system path.

If the HDL simulator executables are not on the system path, select Use the
following HDL simulator executables at the following location and specify
the folder location in the text box below.

If you click Next and the Cosimulation Wizard does not find the executables, the
following occurs:

• You are returned to this dialog and the Cosimulation Wizard displays an error in
the status pane.

• The Cosimulation Wizard switches the option to Use the following HDL
simulator executables at the following location.

• The Cosimulation Wizard makes the HDL simulation path field editable.

You must enter a valid path to the HDL simulator executables before you are
allowed to continue.

Next Steps

• For an HDL cosimulation block, start at “Cosimulation Type—Simulink Block” on
page 9-32.

• For an HDL cosimulation function, start at “Cosimulation Type—MATLAB Function”
on page 9-5.

• For an HDL cosimulation System object, start at “Cosimulation Type—MATLAB
System Object” on page 9-16.

9-103



9 HDL Code Import for Cosimulation

HDL Files

In the HDL Files pane, specify the files to be used in creating the function or block.

1 Click Add to select one or more file names.

The Cosimulation Wizard attempts to determine the file type of each file and display
the type in the File List next to the file name. If the Cosimulation Wizard cannot
determine the type or displays the wrong type, you can change the type directly in
the File Type column.

If you are using ModelSim, you will see compilation scripts listed as .do files
(ModelSim macro file). If you are using Incisive, you will see compilation scripts
listed as system scripts.

2 Remove files by first highlighting the file name in the File List, then clicking
Remove Selected File.
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Next Steps

• For an HDL cosimulation block, start at “HDL Files—Simulink Block” on page 9-34.
• For an HDL cosimulation function, start at “HDL Files—MATLAB Function” on page

9-7.
• For an HDL cosimulation System object, start at “HDL Files—MATLAB System

Object” on page 9-18.

HDL Compilation

In the HDL Compilation pane, you can review the generated HDL compilation
commands. You may override and/or customize those commands, if you wish. If you
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included compilation scripts instead of HDL files, this pane will show you the command
to run those scripts.

1 Enter any changes to the commands in the Compilation Commands box.

Note: Do not include system shell commands; for example:

set file = a.vhd vcom $file

When control returns to the Cosimulation Wizard from executing the command, the
variable no longer holds the value that was set. If you do try to include this type of
command, you will see an error in the Status panel.

2 Click Restore default commands to go back to the generated HDL compilation
commands. You are asked to confirm that you want to discard any changes.

Next Steps

• For an HDL cosimulation block, start at “HDL Compilation—Simulink Block” on page
9-36.

• For an HDL cosimulation function, start at “HDL Compilation—MATLAB Function”
on page 9-8.

• For an HDL cosimulation System object, start at “HDL Compilation—MATLAB
System Object” on page 9-20.

HDL Modules

HDL Modules—Simulink Block
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In the HDL Modules pane, provide the name of the HDL module to be used in
cosimulation.

1 Enter the name of the module at Name of HDL module to cosimulate with.
2 Specify additional simulation options at Simulation options. For example, in the

previous image, the options shown are:

• HDL simulator resolution
• Turn off optimizations that remove signals from the simulation view

Click Restore Defaults to change the options back to the default.
3 When you proceed to the next step, the application performs the following actions in

a command window:

9-107



9 HDL Code Import for Cosimulation

• Starts the HDL simulator.
• Loads the HDL module in the HDL simulator.
• Starts the HDL server, and waits to receive notice that the server has started.
• Connects with the HDL server to get the port information.
• Disconnects and shuts down the HDL server.

Next Steps

• For an HDL cosimulation block, start at “Simulation Options—Simulink Block” on
page 9-37.

• For an HDL cosimulation function, start at “HDL Modules—MATLAB Function” on
page 9-9.

• For an HDL cosimulation System object, start at “Simulation Options—MATLAB
System Object” on page 9-21.
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Startup for HDL Cosimulation

In this section...

“Machine Configuration Requirements” on page 10-2
“HDL Simulator Startup” on page 10-4
“HDL Verifier Libraries” on page 10-10
“Setup Diagnostics and Customization” on page 10-15

Machine Configuration Requirements

• “Valid Configurations For Using the HDL Verifier Software with MATLAB
Applications” on page 10-2

• “Valid Configurations For Using the HDL Verifier Software with Simulink Software”
on page 10-3

Valid Configurations For Using the HDL Verifier Software with MATLAB Applications

The following list provides samples of valid configurations for using the HDL simulator
and the HDL Verifier software with MATLAB software. The scenarios apply whether the
HDL simulator is running on the same or different computing system as the MATLAB
software. In a network configuration, you use an Internet address in addition to a TCP/IP
socket port to identify the servers in an application environment.

• An HDL simulator session connected to a MATLAB function foo through a single
instance of the MATLAB server

• An HDL simulator session connected to multiple MATLAB functions (for example,
foo and bar) through a single instance of the MATLAB server

• An HDL simulator session connected to a MATLAB function foo through multiple
instances of the MATLAB server (each running within the scope of a unique MATLAB
session)

• Multiple HDL simulator sessions each connected to a MATLAB function foo through
multiple instances of the MATLAB server (each running within the scope of a unique
MATLAB session)

• Multiple HDL simulator sessions each connected to a different MATLAB function (for
example, foo and bar) through the same instance of the MATLAB server

• Multiple HDL simulator sessions each connected to MATLAB function foo through a
single instance of the MATLAB server
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Although multiple HDL simulator sessions can connect to the same MATLAB
function in the same instance of the MATLAB server, as this configuration scenario
suggests, such connections are not recommended. If the MATLAB function maintains
state (for example, maintains global or persistent variables), you may experience
unexpected results because the MATLAB function does not distinguish between
callers when handling input and output data. If you must apply this configuration
scenario, consider deriving unique instances of the MATLAB function to handle
requests for each HDL entity.

Notes

• Shared memory communication is an option for configurations that require only one
communication link on a single computing system.

• TCP/IP socket communication is required for configurations that use multiple
communication links on one or more computing systems. Unique TCP/IP socket ports
distinguish the communication links.

• In any configuration, an instance of MATLAB can run only one instance of the HDL
Verifier MATLAB server (hdldaemon) at a time.

• In a TCP/IP configuration, the MATLAB server can handle multiple client
connections to one or more HDL simulator sessions.

Valid Configurations For Using the HDL Verifier Software with Simulink Software

The following list provides samples of valid configurations for using the HDL simulator
and the HDL Verifier software with Simulink software. The scenarios apply whether the
HDL simulator is running on the same or different computing system as the MATLAB or
Simulink products. In a network configuration, you use an internet address in addition to
a TCP/IP socket port to identify the servers in an application environment.

• An HDL Cosimulation block in a Simulink model connected to a single HDL simulator
session

• Multiple HDL Cosimulation blocks in a Simulink model connected to the same HDL
simulator session

• An HDL Cosimulation block in a Simulink model connected to multiple HDL
simulator sessions
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• Multiple HDL Cosimulation blocks in a Simulink model connected to different HDL
simulator sessions

Notes

• HDL Cosimulation blocks in a Simulink model can connect to the same or different
HDL simulator sessions.

• TCP/IP socket communication is required for configurations that use multiple
communication links on one or more computing systems. Unique TCP/IP socket ports
distinguish the communication links.

• Shared memory communication is an option for configurations that require only one
communication link on a single computing system.

HDL Simulator Startup

• “Starting the HDL Simulator from MATLAB” on page 10-4
• “Starting the HDL Simulator from a Shell” on page 10-8

Starting the HDL Simulator from MATLAB

• “Overview” on page 10-4
• “Starting the ModelSim Simulator from MATLAB” on page 10-6
• “Starting the Cadence Incisive Simulator from MATLAB” on page 10-7

Overview

For each supported HDL simulator, HDL Verifier has a unique command to launch
the HDL simulator from within MATLAB. Each command contains a set of customized
property value pairs for specifying the HDL Verifier library to use, the design to load, the
type of communication connection, and so on.

Note: If you plan to use the Cosimulation Wizard, you do not need to start the HDL
simulator separately.

The HDL simulator launch commands are as follows:
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HDL Simulator HDL Verifier Launch Command

Cadence Incisive nclaunch

Mentor Graphics
ModelSim

vsim

• You issue the launch command directly from MATLAB and provide the HDL Verifier
library information and other required parameters (see “HDL Verifier Libraries” on
page 10-10). No special setup is required. This function starts and configures the
HDL simulator for use with the HDL Verifier software. By default, the function starts
the first version of the simulator executable that it finds on the system path (defined
by the path variable), using a temporary file that is overwritten each time the HDL
simulator starts.

• You can customize the startup file and communication mode to be used between
MATLAB or Simulink and the HDL simulator by specifying the call to the HDL
simulator launch command with property name/property value pairs. Refer to the
nclaunch or vsim reference documentation for specific information regarding the
property name/property value pairs.

• If you want to start a different version of the simulator executable than the first one
found on the system path, use the setenv and getenv MATLAB functions to set and
get the environment of any sub-shells spawned by UNIX(), DOS(), or system().

• When you specify a communication mode using any of the HDL Verifier HDL
simulator launch commands, the function applies the specified communication mode
to all MATLAB or Simulink/HDL simulator sessions.

Resources

• “Starting the ModelSim Simulator from MATLAB” on page 10-6, and “Starting
the Cadence Incisive Simulator from MATLAB” on page 10-7 for examples of
using these HDL Verifier HDL simulator launch commands with various property/
name value pairs and other parameters.

•
• “Linking with MATLAB and the HDL Simulator” for more information on how HDL

Verifier links the HDL simulator with MATLAB.
• “Verify HDL Module with MATLAB Test Bench” on page 2-24 for a full cosimulation

example that demonstrates starting the HDL simulator from MATLAB.
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Diagnostic and Customization Setup Script for use with Incisive and ModelSim If you would
like some assistance in setting up your environment for use with HDL Verifier, you
can diagnose your setup (remove or fix omissions and errors) and also customize your
setup for future invocations of nclaunch or vsim by following the process in “Setup
Diagnostics and Customization” on page 10-15.

Starting the ModelSim Simulator from MATLAB

To start the HDL simulator from MATLAB, enter vsim at the MATLAB command
prompt:

>> vsim('PropertyName', 'PropertyValue'...)

The following example changes the folder location to VHDLproj and then calls the
function vsim. Because the command line omits the 'vsimdir' and 'startupfile'
properties, vsim creates a temporary DO file. The 'tclstart' property specifies
Tcl commands that load and initialize the HDL simulator for test bench instance
modsimrand.
cd VHDLproj

vsim('tclstart',...

 'vsimmatlab modsimrand; matlabtb modsimrand 10 ns -socket 4449')

The following example changes the folder location to VHDLproj and then calls the
function vsim. Because the function call omits the 'vsimdir' and 'startupfile'
properties, vsim creates a temporary DO file. The 'tclstart' property specifies
a Tcl command that loads the VHDL entity parse in library work for cosimulation
between vsim and Simulink. The 'socketsimulink' property specifies TCP/IP socket
communication on the same computer, using socket port 4449.
cd VHDLproj

vsim('tclstart', 'vsimulink work.parse', 'socketsimulink', '4449')

The following example has the HDL compilation and simulation commands run when
you start the ModelSim software from MATLAB.
vsim('tclstart', …

        {'vlib work', 'vlog +acc clocked_inverter.v hdl_top.v', 'vsim +acc hdl_top' });

This next example loads the HDL simulation just as in the previous example but it also
loads in the Link to Simulink library, uses socket number 5678 to communicate with
cosimulation blocks in Simulink models, and uses an HDL time precision of 10 ps.
vsim('tclstart', …
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             {'vlib work', 'vlog -voptargs=+acc clocked_inverter.v hdl_top.v', …

              'vsimulink hdl_top -socket 5678 -t 10ps'});

Or
vsim('tclstart', …

             {'vlib work', 'vlog -voptargs=+acc clocked_inverter.v hdl_top.v', …

               'vsimulink hdl_top -t 10ps'}, …

               'socketsimulink', 5678);

Starting the Cadence Incisive Simulator from MATLAB

To start the HDL simulator from MATLAB, enter nclaunch at the MATLAB command
prompt:

>> nclaunch('PropertyName', 'PropertyValue'...)

The following example changes the folder location to VHDLproj and then calls
the function nclaunch. Because the command line omits the 'hdlsimdir' and
'startupfile' properties, nclaunch creates a temporary file. The 'tclstart'
property specifies Tcl commands that load and initialize the HDL simulator for test
bench instance modsimrand.
cd VHDLproj

nclaunch('tclstart',...

 'hdlsimmatlab modsimrand; matlabtb modsimrand 10 ns -socket 4449')

The following example changes the folder location to VHDLproj and then calls
the function nclaunch. Because the function call omits the 'hdlsimdir' and
'startupfile' properties, nclaunch creates a temporary file. The 'tclstart'
property specifies a Tcl command that loads the VHDL entity parse in library work
for cosimulation between nclaunch and Simulink. The 'socketsimulink' property
specifies TCP/IP socket communication on the same computer, using socket port 4449.
cd VHDLproj

nclaunch('tclstart', 'hdlsimulink work.parse', 'socketsimulink', '4449')

Another option is to bring ncsim up in the terminal instead of launching the GUI,
thereby allowing you to interact with the simulation. This next example lists the steps for
you to do this:

1 Start hdldaemon in MATLAB.
2 Start an xterm from MATLAB in the background (key point).
3 Run ncsim in the xterm shell having it call back to the hdlserver to run your

matlabcp function as usual.
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4 Have the matlabcp function touch a file to signal completion while an M script polls
for completion.

The MATLAB script can then change test parameters and run more tests.

Note: The nclaunch command requires the use of property name/property value pairs.
You get an error if you try to use the function without them.

Starting the HDL Simulator from a Shell

• “Starting the ModelSim Software from a Shell” on page 10-8
• “Starting the Cadence Incisive HDL Simulator from a Shell” on page 10-9

Starting the ModelSim Software from a Shell

To start the HDL simulator from a shell and include the HDL Verifier libraries, you need
to first run the configuration script. See “Setup Diagnostics and Customization” on page
10-15.

After you have the configuration files, you can start the ModelSim software from the
shell by typing:

% vsim design_name -f matlabconfigfile

matlabconfigfile should be the name of the MATLAB configuration file you created
with syscheckmq (Linux/UNIX®) or that you created yourself using our template
(Windows). If you are connecting to Simulink, this should be the name of the Simulink
configuration file. You must also specify the path to the configuration file even if it
resides in the same folder as vsim.exe. Use design_name if you want to also start the
simulation.

The configuration file mainly defines the -foreign option to vsim which in turn loads
the HDL Verifier shared library and specifies its entry point.

You can also specify any other existing configuration files you may also be using with this
call.

If you are performing this step manually, the following use of -foreign with vsim loads
the HDL Verifier client shared library and specifies its entry point:

% vsim design_name -foreign matlabclient /path/library
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where path is the path to this particular HDL Verifier library. See“HDL Verifier
Libraries” on page 10-10 to find the applicable library name for your machine. Use
design_name if you want to also start the simulation.

Note: You can also issue this exact same command from inside the HDL simulator.

Starting the Cadence Incisive HDL Simulator from a Shell

To start the HDL simulator from a shell and include the HDL Verifier libraries, you need
to first run the configuration script. See “Using the Configuration and Diagnostic Script
for UNIX /Linux” on page 10-16.

After you have the configuration files, you can start the HDL simulator from the shell by
typing:

% ncsim -f matlabconfigfile modelname

matlabconfigfile should be the name of the MATLAB configuration file you created
with syscheckin. If you are connecting to Simulink, this should be the name of the
Simulink configuration file. For example:

% ncsim -gui -f simulinkconfigfile modelname

Either way, you must also specify the path to the configuration file if it does not reside in
the same folder as ncsim.exe.

You can also specify any other existing configuration files you may also be using with this
call.

Starting ncsim in an Terminal

If you would like to bring up ncsim in an Xterm terminal, instead of launching the GUI,
perform the following steps:

1 Start hdldaemon in MATLAB.
2 Start an Xterm from MATLAB in the background.
3 Run ncsim in the Xterm shell, having it call back to the hdlserver to run your

matlabtb function as usual.
4 Specify that the matlabtb function use the touch command on a file to signal

completion while a MATLAB script polls for completion.
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The MATLAB script can then change test parameters and run more tests.

HDL Verifier Libraries

In general, you want to use the same compiler for all libraries linked into the same
executable. The verification software provides many versions of the same library
compilers that are available with the HDL simulators (usually some version of GCC).
Using the same libraries helps the software stay compatible with other C++ libraries that
may get linked into the HDL simulator, including SystemC libraries.

If you have any of these conditions, choose the version of the HDL Verifier library that
matches the compiler used for that code:

• Link other third-party applications into your HDL simulator.
• Compile and link in SystemC code as part of your design or test bench.
• Write custom C/C++ applications and link them into your HDL simulator.

If you do not link any other code into your HDL simulator, you can use any version of
the supplied libraries. The HDL Verifier launch command (nclaunch or vsim) chooses a
default version of this library.

For examples on specifying HDL Verifier libraries when cosimulating across a network,
see “Cross-Network Cosimulation” on page 10-22.

Library Names

The HDL Verifier HDL libraries use the following naming format:
edalink/extensions/version/arch/lib{version_short_name}{client_server_tag}

     _{compiler_tag).{libext}

where

Argument Incisive Users ModelSim Users

version incisive modelsim

arch linux64 linux64, windows32, or windows64
version_short_name lfihdl lfmhdl

client_server_tag c (MATLAB) or
s (Simulink)

c (MATLAB) or s (Simulink)
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Argument Incisive Users ModelSim Users

compiler_tag gcc41, gcc44,
tmwgcc

Linux: gcc433, gcc450, tmwgcc
Windows 32: gcc421vc9
Windows 64: gcc450, tmwvs

libext so dll or so

Not all combinations are supported. See “Default Libraries” on page 10-11 for valid
combinations.

For more on MATLAB build compilers, see MATLAB Build Compilers.

Default Libraries

HDL Verifier scripts fully support the use of default libraries.

The following table lists all the libraries shipped with the verification software for each
supported HDL simulator. The default libraries for each platform are in bold text.

Default Libraries for use with ModelSim

Platform MATLAB Library c (MATLAB) or s (Simulink) Library

Linux 64 liblfmhdlc_tmwgcc.so

liblfmhdlc_gcc433.so

liblfmhdls_gcc450.dll

liblfmhdls_tmwgcc.so

liblfmhdls_gcc433.so

liblfmhdls_gcc450.dll

Windows 32 liblfmhdlc_gcc421vc9.dll liblfmhdls_gcc421vc9.dll

Windows 64 liblfmhdlc_tmwvs.dll

liblfmhdlc_gcc450.dll

liblfmhdls_tmwvs.dll

liblfmhdls_gcc450.dll

Default Libraries for use with Incisive

Platform MATLAB Library Simulink Library

Linux 64 liblfihdlc_gcc41.so

liblfihdlc_gcc44.so

liblfihdlc_tmwgcc.so

liblfihdls_gcc41.so

liblfihdls_gcc44.so

liblfihdls_tmwgcc.so

Using an Alternative Library

The HDL Verifier launch commands contain parameters for specifying the HDL-side
library.
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• “Incisive Users: Using an Alternative Library” on page 10-12
• “ModelSim Users: Using an Alternative Library” on page 10-13

Incisive Users: Using an Alternative Library

You can use a different HDL-side library by specifying it explicitly using the libfile
parameter to the nclaunch MATLAB command. You should choose the version of the
library that matches the compiler and system libraries you are using for any other C/
C++ libraries linked into the HDL simulator. Depending on the version of your HDL
simulator, you may need to explicitly set additional paths in the LD_LIBRARY_PATH
environment variable.

For example, if you want to use a nondefault library:

1 Copy the system libraries from the MATLAB installation (found in matlabroot/
sys/os/linux64, where matlabroot is your MATLAB installation) to the machine
with the HDL simulator.

2 Modify the LD_LIBRARY_PATH environment variable to add the path to the system
libraries that were copied in step 1.

Example: HDL Verifier Alternate Library Using nclaunch

In this example, you are using a 64-bit Linux machine to run both MATLAB and Incisive.
Because you have your own C++ application, and you are linking into ncsim that you
used twmgcc to compile, you are using the HDL Verifier version compiled with tmwgcc,
instead of using the default library version compiled with GCC 4.1.

In MATLAB:
currPath = getenv('PATH');

setenv('PATH',['/tools/IUS-1110/bin:' currPath]);

nclaunch('tclstart',{'exec ncvhdl inverter.vhd', ...

                     'exec ncelab -access +rwc inverter', ...

                     'hdlsimulink -gui inverter' }, ...

                     'libfile','liblfihdls_tmwgcc');

The PATH is changed so that we get the desired version of the HDL simulator tools.

The library resolution can be verified using ldd from within the ncsim console GUI.

ncsim> exec ldd /path/to/matlab/toolbox/edalink/extensions/incisive/linux64/liblfihdls_tmwgcc.so

        linux-vdso.so.1 =>  (0x00007fff2ffff000)

        libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f98361a0000)

        libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f9835e99000)

        libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f9835c16000)

        libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f9835a00000)
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        libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f9835676000)

        /lib64/ld-linux-x86-64.so.2 (0x00007f983661c000)

Example: HDL Verifier Alternate Library Using System Shell

This example shows how to load a Cadence Incisive simulator session by explicitly
specifying the HDL Verifier library (default or not). By explicitly using a system shell,
you can execute this example on the same machine as MATLAB, on a different machine,
and even on a machine with a different operating system.

In this example, you are running the 64-bit Linux version of Cadence Incisive 10.2-s040;
it does not matter what machine MATLAB is running on. Instead of using the default
library version compiled with GCC 3.2.3 in the Cadence Incisive distribution, you are
using the version compiled with GCC 4.4.

In a csh-compatible system shell:
csh> setenv PATH /tools/ius/lnx/tools/bin/64bit:${PATH}

csh> setenv LD_LIBRARY_PATH /tools/ius/lnx/tools/systemc/gcc/4.4-x86_64/install/lib64:${LD_LIBRARY_PATH}

csh> ncvhdl inverter.vhd

csh> ncelab -access +rwc inverter

csh> ncsim -tcl -loadvpi /tools/matlab/toolbox/edalink/extensions/incisive/linux64/liblfihdlc_gcc44:matlabclient inverter.vhd

The PATH is changed so that we get the desired version of the Cadence Incisive tools.
Although ncsim will find any GCC libs in its installations, the LD_LIBRARY_PATH is
changed to show how you might do this with a custom installation of GCC.

You can check the library resolution using ldd as in the previous example.

ModelSim Users: Using an Alternative Library

You can use a different HDL-side library by specifying it explicitly using the libfile
parameter to the vsim MATLAB command. You should choose the version of the
library that matches the compiler and system libraries you are using for any other C/
C++ libraries linked into the HDL simulator. Depending on the version of your HDL
simulator, you may need to explicitly set additional paths in the LD_LIBRARY_PATH
environment variable.

For example, if you want to use a nondefault library:

1 Copy the system libraries from the MATLAB installation (found in matlabroot/
sys/os/, where matlabroot is your MATLAB installation) to the machine with the
HDL simulator.

2 Modify the LD_LIBRARY_PATH environment variable to add the path to the system
libraries that were copied in step 1.
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Example: HDL Verifier Alternative Library Using vsim

In this example, you are using a 64-bit Linux machine to run both MATLAB and
ModelSim. Because you want to incorporate some SystemC designs, you are using the
HDL Verifier version compiled with gcc450. You can download this version of GCC with
its associated system libraries from Mentor Graphics, instead of using the default library
version compiled with tmwgcc.

In MATLAB:
currPath = getenv('PATH');

currLdPath = getenv('LD_LIBRARY_PATH');

setenv('PATH',['/tools/modelsim-10.1c/bin:' currPath]);

setenv('LD_LIBRARY_PATH',['/tools/modelsim-10.1c/gcc-4.5.0-linux/lib:' currLdPath]);

vsim('tclstart',{'vlib work','vcom inverter.vhd','vsimulink inverter'}, ...

       'libfile','liblfmhdls_gcc450');

You change the PATH so that you get the desired version of the ModelSim software. You
change theLD_LIBRARY_PATH because the HDL simulator does not add the path to the
system libraries.

The library resolution can be verified using ldd from within the ModelSim GUI:
exec ldd /path/to/matlab/toolbox/edalink/extensions/modelsim/linux64/liblfmhdls_gcc450.so 

        linux-vdso.so.1 =>  (0x00007fff06652000)

        libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f505083d000)

        libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f5050536000)

        libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f50502b3000)

        libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f505009d000)

        libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f504fd13000)

        /lib64/ld-linux-x86-64.so.2 (0x00007f5050cb8000)

Example: HDL Verifier Alternate Library Using System Shell

This example shows how to load a ModelSim session by explicitly specifying the HDL
Verifier library (either the default or one of the alternatives). By explicitly using a system
shell, you can execute this example on the same machine as MATLAB, on a different
machine, and even on a machine with a different operating system.

In this example, you are running the 64-bit Linux version of QuestaSim 10.1a. It does not
matter which machine is running MATLAB. Instead of using the HDL Verifier default
library version compiled with tmwgcc, you are using the version compiled with GCC
4.5.0. You can download this version of GCC with its associated system libraries from
Mentor Graphics.

In a csh-compatible system shell:
csh> setenv PATH /tools/questasim/bin:${PATH}

csh> setenv LD_LIBRARY_PATH /tools/mtigcc/gcc-4.5.0-linux_x86_64/lib64:${LD_LIBRARY_PATH}
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csh> setenv MTI_VCO_MODE 64

csh> vlib work

csh> vcom +acc+inverter inverter.vhd

csh> vsim +acc+inverter -foreign "matlabclient /tools/matlab/toolbox/edalink

    /extensions/modelsim/linux64/liblfmhdlc_gcc450.so" work.inverter

You change the PATH so that you get the desired version of the ModelSim software. You
change the LD_LIBRARY_PATH because the HDL simulator does not add the path to
the system libraries unless you are working with 10.1+ and have placed GCC at the root
of the ModelSim installation.

You can check the library resolution using ldd as in the previous example.

Setup Diagnostics and Customization

• “Overview to the HDL Verifier Configuration and Diagnostic Script” on page 10-15
• “Using the Configuration and Diagnostic Script for UNIX /Linux” on page 10-16
• “Using the Configuration and Diagnostic Script with Windows” on page 10-20

Overview to the HDL Verifier Configuration and Diagnostic Script

HDL Verifier software provides a guided setup script (syscheckmq for ModelSim
users and syscheckin for Incisive users) for configuring the MATLAB and Simulink
connections to your simulator. This script works whether you have installed the
verification software and MATLAB on the same machine as the HDL simulator or
installed them on different machines.

The setup script creates a configuration file containing the location of the specified HDL
Verifier MATLAB and Simulink libraries. You can then include this configuration with
any other calls you make using the command vsim (ModelSim) or ncsim (Incisive) from
the HDL simulator. You only need to run this script once.

Note: The HDL Verifier configuration and diagnostic script works only on UNIX and
Linux. Windows users: please see instructions below.

You can find the setup scripts in the following folder:

matlabroot/toolbox/edalink/foundation/hdllink/scripts

Refer to “HDL Verifier Libraries” on page 10-10 for the application library for your
platform.
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For assistance in performing cross-network cosimulation, see “Cross-Network
Cosimulation” on page 10-22.

After you have created your configuration files, see “Starting the HDL Simulator from a
Shell” on page 10-8.

Using the Configuration and Diagnostic Script for UNIX /Linux

The setup script provides an easy way to configure your simulator setup to work with the
HDL Verifier software.

The following is an example of running the setup script under the following conditions:

• You have installed HDL Verifier on a Linux 64 machine.
• You have moved the HDL Verifier libraries to a different location than where you first

installed them (either to another folder or to another machine).
• You want to test the TCP/IP connection.

Running the Configuration and Diagnostic Script for ModelSim (syscheckmq)

Start the script by typing syscheckmq at a system prompt. The system returns the
following information:
% syscheckmq

********************************************************************************

Kernel name: Linux

Kernel release: 2.6.22.8-mw017

Machine: x86_64

********************************************************************************

The script first returns the location of the HDL simulator installation (vsim.exe). If it
does not find an installation, you receive an error message. Either provide the path to
the installation or quit the script and install the HDL simulator. You are then prompted
to accept this installation or provide a path to another one, after which you receive a
message confirming the HDL simulator installation:
Found /hub/share/apps/HDLTools/ModelSim/modelsim-6.4a-tmw-000/modeltech/bin/vsim

    on the path.

Press Enter to use the path we found or enter another one:

********************************************************************************

/hub/share/apps/HDLTools/ModelSim/modelsim-6.4a-tmw-000/modeltech/bin/vsim -version

Model Technology ModelSim SE-64 vsim 6.4a Simulator 2008.08 Aug 28 2008

ModelSim mode: 32 bits

********************************************************************************
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Next, the script needs to know where it can find the HDL Verifier libraries.
Select method to search for HDL Verifier libraries:

1. Use libraries in a MATLAB installation.

2. Prompt me to specify the direct path to the libraries.

2

Enter the path to liblfmhdlc_tmwgcc.so and liblfmhdls_tmwgcc.so:

/tmp/extensions/modelsim/linux64

Found /tmp/extensions/modelsim/linux64/liblfmhdlc_tmwgcc.so

and /tmp/extensions/modelsim/linux64/liblfmhdls_tmwgcc.so.

The script then runs a dependency checker to check for supporting libraries. If any of the
libraries cannot be found, you probably need to append your environment path to find
them.
********************************************************************************

Running dependency checker "ldd /tmp/extensions/modelsim/linux64/liblfmhdlc_tmwgcc.so".

Dependency checker passed.

Dependency status:

        librt.so.1 => /lib/librt.so.1 (0x00002acfe566e000)

        libstdc++.so.6 => /usr/lib/libstdc++.so.6 (0x00002acfe5778000)

        libm.so.6 => /lib/libm.so.6 (0x00002acfe5976000)

        libgcc_s.so.1 => /lib/libgcc_s.so.1 (0x00002acfe5af8000)

        libc.so.6 => /lib/libc.so.6 (0x00002acfe5c6000)

        /lib64/ld-linux-x86-64.so.2 (0x0000555555554000)

********************************************************************************

This next step loads the HDL Verifier libraries and compiles a test module to verify the
libraries loaded as expected.
Press Enter to load HDL Verifier or enter 'n' to skip this test:

Reading /mathworks/hub/share/apps/HDLTools/ModelSim/modelsim-6.4a-tmw-000/se/modeltech/

    linux_x86_64/../modelsim.ini "worklfx9019" maps to directory worklfx9019. 

    (Default mapping)

Model Technology ModelSim SE-64 vlog 6.4a Compiler 2008.08 Aug 28 2008

-- Compiling module d9019

Top level modules:

        d9019

********************************************************************************

Reading /mathworks/hub/share/apps/HDLTools/ModelSim/modelsim-6.4a-tmw-000/se/modeltech/tcl

    /vsim/pref.tcl 

# 6.4a

# vsim -do exit -foreign {matlabclient /tmp/lfmconfig/linux64/liblfmhdlc_tmwgcc.so} 

      -noautoldlibpath -c worklfx9019.d9019

# //  ModelSim SE-64 6.4a Aug 28 Linux 2.6.22.8-mw017

.

.

.

# Loading work.d9019

# Loading /tmp/lfmconfig/linux64/liblfmhdlc_tmwgcc.so

# exit 

10-17



10 HDL Cosimulation Reference

********************************************************************************

HDL Verifier libraries loaded successfully.

********************************************************************************

Next, the script checks a TCP connection. If you choose to skip this step, the
configuration file specifies use of shared memory. Both shared memory and socket
configurations are in the configuration file; depending on your choice, one configuration
or the other is commented out.
Press Enter to check for TCP connection or enter 'n' to skip this test:

Enter an available port [5001]

Enter remote host [localhost]

Press Enter to continue

ttcp_glnx -t -p5001 localhost

Connection successful

Lastly, the script creates the configuration file, unless for some reason you choose not to
do so at this time.
********************************************************************************

Press Enter to Create Configuration files or 'n' to skip this step:

********************************************************************************

Created template files simulink9675.arg and matlab8675.arg. Inspect and modify

if desired.

********************************************************************************

Diagnosis Completed

The template file names, in this example simulink24255.arg and matlab24255.arg,
have different names each time you run this script.

After the script is complete, you can leave the configuration files where they are or move
them to wherever it is convenient.

Running the Configuration and Diagnostic Script for Cadence Incisive (syscheckin)

Start the script by typing syscheckin at a system prompt. The system returns the
following information:
% syscheckin

********************************************************************************

Kernel name: Linux

Kernel release: 2.6.22.8-mw017
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Machine: x86_64

********************************************************************************

The script first returns the location of the HDL simulator installation (ncsim.exe). If
it does not find an installation, you receive an error message. Either provide the path to
the installation or quit the script and install the HDL simulator. You are then prompted
to accept this installation or provide a path to another one, after which you receive a
message confirming the HDL simulator installation:
Found /hub/share/apps/HDLTools/IUS/IUS-61-tmw-000/lnx/tools/bin/64bit/ncsim on the path.

Press Enter to use the path we found or enter another one:

********************************************************************************

/hub/share/apps/HDLTools/IUS/IUS-61-tmw-000/lnx/tools/bin/64bit/ncsim -version

TOOL: ncsim(64) 06.11-s005

Cadence Incisive mode: 64 bits

********************************************************************************

Next, the script needs to know where it can find the HDL Verifier libraries.
Select method to search for HDL Verifier libraries:

1. Use libraries in a MATLAB installation.

2. Prompt me to specify the direct path to the libraries.

2 

Enter the path to liblfihdlc_gcc323.so and liblfihdls_gcc323.so:

tmp/extensions/incisive/linux64

Found /tmp/extensions/incisive/linux64/liblfihdlc_gcc323.so

and /tmp/extensions/incisive/linux64/liblfihdls_gcc323.so.

The script then runs a dependency checker to check for supporting libraries. If any of the
libraries cannot be found, you probably need to append your environment path to find
them.
********************************************************************************

Running dependency checker "ldd /tmp/extensions/incisive/linux64/liblfihdlc_gcc323.so".

Dependency checker passed.

Dependency status:

     librt.so.1 => /lib/librt.so.1 (0x00002b6119631000)

     libstdc++.so.5 => /usr/lib/libstdc++.so.5 (0x00002b611973a000)

     libm.so.6 => /lib/libm.so.6 (0x00002b6119916000)

     libgcc_s.so.1 => /lib/libgcc_s.so.1 (0x00002b6119a99000)

     libc.so.6 => /lib/libc.so.6 (0x00002b6119ba6000)

     libpthread.so.0 => /lib/libpthread.so.0 (0x00002b6119de3000)

     /lib64/ld-linux-x86-64.so.2 (0x0000555555554000)

********************************************************************************

This next step loads the HDL Verifier libraries and compiles a test module to verify the
libraries loaded as expected.
Press Enter to load HDL Verifier or enter 'n' to skip this test:

ncvlog(64): 06.11-s005: (c) Copyright 1995-2007 Cadence Design Systems, Inc.
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define linux64 /work/matlab/toolbox/incisive/linux64

.

.

.

ncsim> exit

********************************************************************************

HDL Verifier libraries loaded successfully.

********************************************************************************

Next, the script checks a TCP connection. If you choose to skip this step, the
configuration file specifies use of shared memory. Both shared memory and socket
configurations are in the configuration file; depending on your choice, one configuration
or the other is commented out.
Press Enter to check for TCP connection or enter 'n' to skip this test:

Enter an available port [5001]

Enter remote host [localhost]

Press Enter to continue

ttcp_glnx -t -p5001 localhost

Connection successful

Lastly, the script creates the configuration file, unless for some reason you choose not to
do so at this time.
********************************************************************************

Press Enter to Create Configuration files or 'n' to skip this step:

********************************************************************************

Created template files simulink9675.arg and matlab8675.arg. Inspect and modify

if desired.

********************************************************************************

Diagnosis Completed

The template file names, in this example simulink24255.arg and matlab24255.arg,
have different names each time you run this script.

After the script is complete, you can leave the configuration files where they are or move
them to wherever it is convenient.

Using the Configuration and Diagnostic Script with Windows

The setup script does not run on Windows. However, if your HDL simulator runs
on Windows, you can use the configuration script on Windows by following these
instructions:
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1 Create a MATLAB configuration file. You may name it whatever you like; there are
no file-naming restrictions. Enter the following text:
//Command file for HDL Verifier Link MATLAB library

//for use with Mentor Graphics ModelSim.

//Loading of foreign Library, usage example: vsim -f matlab14455.arg entity.

//You can manually change the following line to point to the applicable library.

//The default location of the 32-bit Windows library is at

//MATLABROOT/toolbox/edalink/extensions/modelsim/windows32/liblfmhdlc_gcc421vc9.dll.

-foreign "matlabclient c:/path/liblfmhdlc_gcc421vc9.dll"

where path is the path to the particular HDL Verifier shared library you want to
invoke (in this example. See “HDL Verifier Libraries” on page 10-10).

For more information on the -foreign option, refer to the ModelSim
documentation.

The comments in the above text are optional.
2 Create a Simulink configuration file and name it. There are no file-naming

restrictions. Enter the following text:
//Command file for  HDL Verifier Simulink library

//for use with Mentor Graphics ModelSim.

//Loading of foreign Library, usage example: vsim -f simulink14455.arg entity.

//You can manually change the following line to point to the applicable library.

//For example the default location of the 32-bit Windows library is at

//MATLABROOT/toolbox/edalink/extensions/modelsim/windows32/liblfmhdls_gcc421vc9.dll.

//For socket connection uncomment and modify the following line:

-foreign "simlinkserver c:/path/liblfmhdls_gcc421vc9.dll  ; -socket 5001"

//For shared connection uncomment and modify the following line:

//-foreign "simlinkserver c:/path/liblfmhdls_gcc421vc9.dll"

Where path is the path to the particular HDL Verifier shared library you want to
invoke. See “HDL Verifier Libraries” on page 10-10.

Note: If you are going to use a TCP/IP socket connection, first confirm that you have
an available port to put in this configuration file. Then, comment out whichever type
of communication you will not be using.

The comments in the above text are optional.

After you have finished creating the configuration files, you can leave the files where
they are or move them to another location that is convenient.

10-21



10 HDL Cosimulation Reference

Cross-Network Cosimulation

In this section...

“Why Perform Cross-Network Cosimulation?” on page 10-22
“Preparing for Cross-Network Cosimulation” on page 10-22
“Performing Cross-Network Cosimulation Using MATLAB” on page 10-24
“Performing Cross-Network Cosimulation Using Simulink” on page 10-26

Why Perform Cross-Network Cosimulation?

You can perform cross-network cosimulation when your setup comprises one machine
running MATLAB and Simulink software and another machine running the HDL
simulator. Typically, a Windows-platform machine runs the MATLAB and Simulink
software, while a Linux machine runs the HDL simulator. However, these procedures
apply to any combination of platforms that HDL Verifier and the HDL simulator support.

Preparing for Cross-Network Cosimulation

Before you cosimulate between the HDL simulator and MATLAB or Simulink across a
network, perform the following steps:

1 Create your design and testing files.

ModelSim Users

• Create and compile your HDL design, and create your MATLAB function (for
MATLAB cosimulation) or Simulink model (for Simulink cosimulation).

• If you are going to cosimulate with Simulink, use the -voptargs=+acc flag
when you compile so that the design is not optimized, and include the same flag
when you issue the vsim command (see “Performing Cross-Network Cosimulation
Using Simulink” on page 10-26). Using this flag retains some unused signals
from the design which are required by the Simulink model to run and display the
results.

Incisive Users

Create, compile, and elaborate your HDL design, and create your MATLAB function
(for MATLAB cosimulation), or Simulink model (for Simulink cosimulation).
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2 Copy HDL Verifier libraries to the machine with the HDL simulator

a Go to the system where you installed MATLAB. Then, find the folder in the
MATLAB distribution where the HDL Verifier libraries reside.

You can usually find the libraries in the default installed folder:
matlabroot/toolbox/edalink/extensions/adaptor/platform/productlibraryname_

compiler_tag.ext

where the variable shown in the following table have the values indicated.

Variable Value

matlabroot The location where you installed the MATLAB
software; default value is MATLAB/version
where version is the installed release (for
example, R2009a).

adaptor incisive or modelsim
platform The operating system of the machine with the

HDL simulator, for example, linux32. (For
more information, see “HDL Verifier Libraries”
on page 10-10.)

productlibraryname The name of the library files for MATLAB
and for Simulink (for example, liblfmhdlc,
liblfmhdls for ModelSim users; liblfihdlc,
liblfihdls for Incisive users).
See “HDL Verifier Libraries” on page 10-10.

compiler_tag The compiler used to create the library (for
example, gcc32 or spro). For more information,
see “HDL Verifier Libraries” on page 10-10.

ext dll (dynamic link library—Windows only) or so
( shared library extension)

For a list of all the HDL Verifier HDL shared libraries shipped, see “Default
Libraries” on page 10-11.

b From the MATLAB machine, copy the HDL Verifier libraries you plan to use
(which you determined in step 2) to the machine where you installed the HDL
simulator. Make note of the location to which you copied the libraries; you'll
need this information when you are actually establishing the connection to the
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HDL simulator. For purposes of this example, the sample code refers to the
destination folder as HDLSERVER_LIB_LOCATION.

If you now want to cosimulate with MATLAB, see “Performing Cross-Network
Cosimulation Using MATLAB” on page 10-24. If you want to cosimulate with
Simulink, see “Performing Cross-Network Cosimulation Using Simulink” on page
10-26.

Performing Cross-Network Cosimulation Using MATLAB

To perform an HDL-simulator-to-MATLAB cosimulation session across a network, follow
these steps:

ModelSim Users

1 In MATLAB, get an available socket using hdldaemon:

hdldaemon('socket',0)

Or assign one (that you know is available):

hdldaemon('socket',4449)

2 On the machine with the HDL simulator, launch the HDL simulator from a shell
with the following command:
vsim -foreign "matlabclient /HDLSERVER_LIB_LOCATION/library_name;" design_name

where the arguments shown in the following table have the values indicated.

Argument Value

library_name The name of the library you copied to
the machine with the HDL simulator
(in “Preparing for Cross-Network
Cosimulation” on page 10-22).

design_name The VHDL or Verilog design you want to
load

3 In the HDL simulator, schedule the test bench or component (matlabcp or
matlabtb). Specify the socket port number from step 1 and the name of the host
machine where hdldaemon is running.

10-24



 Cross-Network Cosimulation

Incisive Users

1 In MATLAB, get an available socket using hdldaemon:

hdldaemon('socket',0)

Or assign one:

hdldaemon('socket',4449)

2 Create a MATLAB configuration file (for loading the functions used in the HDL
simulator) with the following contents:

//Command file for MATLAB HDL Verifier.

//Loading of foreign Library and HDL simulator functions.

-loadcfc /HDLSERVER_LIB_LOCATION/library_name:matlabclient

//TCL wrappers for MATLAB commands

-input @proc" "nomatlabtb" "{args}" "{call" "nomatlabtb" "\$args}

-input @proc" "matlabtb" "{args}" "{call" "matlabtb" "\$args}

-input @proc" "matlabcp" "{args}" "{call" "matlabcp" "\$args}

-input @proc" "matlabtbeval" "{args}" "{call" "matlabtbeval" "\$args}

Where library_name is the name of the library you copied in “Preparing for Cross-
Network Cosimulation” on page 10-22. You may name this configuration file
anything you like.

3 On the machine with the HDL simulator, launch the HDL simulator from a shell
with the following command:

ncsim -gui -f matlab_config.file design_name

where the arguments shown in the following table have the values indicated.

Argument Value

matlab_config.file The name of the MATLAB configuration
file (from step 3)

design_name The VHDL or Verilog design you want to
load

4 In the HDL simulator, schedule the test bench or component (matlabcp or
matlabtb). Specify the socket port number from step 1 and the name of the host
where hdldaemon is running.
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Performing Cross-Network Cosimulation Using Simulink

When you want to perform an HDL-simulator-to-Simulink cosimulation session across a
network, follow these steps:

ModelSim Users

1 Launch the HDL simulator from a shell with the following command:
vsim -foreign "simlinkserver /HDLSERVER_LIB_LOCATION/library_name;

    -socket socket_num" -voptargs=+acc design_name

where the arguments shown in the following table have the values indicated.

Argument Value

library_name The name of the library you copied to
the machine with the HDL simulator
(in “Preparing for Cross-Network
Cosimulation” on page 10-22).

socket_num The socket number you have chosen for
this connection

design_name The VHDL or Verilog design you want to
load

2 On the machine with MATLAB and Simulink, start Simulink and open your model.
3 Double-click on the HDL Cosimulation block to open the Function Block Parameters

dialog box.
4 Click on the Connections tab.

a Clear “The HDL simulator is running on this computer.” HDL Verifier changes
the Connection method to Socket.

b In the text box labeled Host name, enter the host name of the machine where
the HDL simulator is located.

c In the text box labeled Port number or service, enter the socket number from
step 1.

d Click OK to exit block dialog box, and save your changes.

Incisive Users

1 Launch the HDL simulator from a shell with the following command:
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ncsim -gui -loadvpi "/HDLSERVER_LIB_LOCATION/library_name:simlinkserver"

    +socket=socket_num design_name

where the arguments shown in the following table have the values indicated.

Argument Value

library_name The name of the library you copied to
the machine with the HDL simulator
(in “Preparing for Cross-Network
Cosimulation” on page 10-22).

socket_num The socket number you have chosen for
this connection

design_name The VHDL or Verilog design you want to
load

2 On the machine with MATLAB and Simulink, start Simulink and open your model.
3 Double-click on the HDL Cosimulation block to open the Function Block Parameters

dialog box.
4 Click on the Connections tab.

a Clear the check box labeled The HDL simulator is running on this
computer. HDL Verifier changes the Connection method to Socket.

b In the Host name box, enter the host name of the machine where the HDL
simulator is located.

c In the Port number or service box, enter the socket number from step 1.
d Click OK to exit block dialog box, and save your changes.

Next, run your simulation, add more blocks, or make other desired changes. For
instructions on using Simulink and the HDL simulator for cosimulation, see “Simulink as
a Test Bench” on page 6-2 or “Component Simulation with Simulink” on page 7-2.
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Test Bench and Component Function Writing

In this section...

“Writing Functions Using the HDL Instance Object” on page 10-28
“Writing Functions Using Port Information” on page 10-32

Writing Functions Using the HDL Instance Object

This section explains how you use the use_instance_obj argument for MATLAB
functions matlabcp and matlabtb. This feature replaces the iport, oport, tnext,
tnow, and portinfo arguments of the MATLAB function definition. Instead, an HDL
instance object is passed to the function as an argument. With this feature, matlabcp
and matlabtb function callbacks get the HDL instance object passed in: to hold state,
provide read/write access protection for signals, and allow you to add state as desired.

With this feature, you gain the following advantages:

• Use of the same MATLAB function to represent behavior for different instances of the
same module in HDL without need to create one-off wrapper functions.

• No need for special portinfoargument on first invocation.
• No need to use persistent or global variables.
• Better feedback and protections on reading/writing of signals.
• Use of object fields to identify the instance path and whether the call comes from a

component or test bench function.
• Use of the field argument to pass user-defined arguments from the matlabcp or

matlabtb instantiation on the HDL side to the function callbacks.

The use_instance_obj argument is identical for both matlabcp and matlabtb.
You include the -use_instance_obj argument with matlabcp or matlabtb in the
following format:

matlabcp modelname -mfunc funcname -use_instance_obj

When you use use_instance_obj, HDL Verifier passes an HDL instance object to
the function specified with the -mfunc argument. The function called has the following
signature:

function MyFunctionName(hdl_instance_obj)
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The HDL instance object, hdl_instance_obj, has the fields shown in the following
table.

Field Read/
Write Access

Description

tnext Write only Used to schedule a callback during the set time value. This field
is the same as tnext in the old portinfo structure. For example:
hdl_instance_obj.tnext = hdl_instance_obj.tnow + 5e-9

This line of code schedules a callback at time = 5 nanoseconds
from tnow.

userdata Read/Write Stores state variables of the current matlabcp instance. You
can retrieve the variables the next time the callback of this
instance is scheduled.

simstatus Read only Stores the status of the HDL simulator. The HDL Verifier
software sets this field to 'Init' during the first callback for
this particular instance and to 'Running' thereafter. This field
value is a read-only property.

>> hdl_instance_obj.simstatus

ans=

      Init

instance Read only Stores the full path of the Verilog/VHDL instance associated
with the callback. instance is a read-only property. The value of
this field equals that of the module instance specified with the
function call. For example:

In the HDL simulator:
hdlsim> matlabcp osc_top -mfunc oscfilter use_instance_obj

In MATLAB:

>> hdl_instance_obj.instance

ans=

  osc_top

argument Read only Stores the argument set by the -argument option of matlabcp.
For example:
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Field Read/
Write Access

Description

matlabtb osc_top -mfunc oscfilter -use_instance_obj -argument foo

The verification software supports the -argument option only
when you use it with -use_instance_obj, otherwise the
argument is ignored. argument is a read-only property.

>> hdl_instance_obj.argument

ans= 

     foo

portinfo Read only Stores information about the VHDL and Verilog ports associated
with this instance. This field value is a read-only property,
which has a field structure that describes the ports defined
for the associated HDL module. For each port, the portinfo
structure passes information such as the port’s type, direction,
and size. For more information on port data, see “Gaining Access
to and Applying Port Information” on page 10-35.
hdl_instance_obj.portinfo.field1.field2.field3

Note: When you use use_instance_obj, you access
tscale through the HDL instance object. If you do not use
use_instance_obj, you can still access tscale through
portinfo.

tscale Read only Stores the resolution limit (tick) in seconds of the HDL
simulator. This field value is a read-only property.

>> hdl_instance_obj.tscale

ans=

 1.0000e-009

Note: When you use use_instance_obj, you access
tscale through the HDL instance object. If you do not use
use_instance_obj, you can still access tscale through
portinfo.
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Field Read/
Write Access

Description

tnow Read only Stores the current time. This field value is a read-only property.
hdl_instance_obj.tnext = hld_instance_obj.tnow + fastestrate;

portvalues Read/Write Stores the current values of and sets new values for the output
and input ports for a matlabcp instance. For example:

>> hdl_instance_obj.portvalues

ans =

Read Only Input ports:

 clk_enable: []

 clk: []

 reset: []

Read/Write Output ports:

 sine_out: [22x1 char]

linkmode Read only Stores the status of the callback. The HDL Verifier software
sets this field to 'testbench' if the callback is associated with
matlabtb and 'component' if the callback is associated with
matlabcp. This field value is a read-only property.

>> hdl_instance_obj.linkmode

ans=

 component

Example: Using matlabcp and the HDL Instance Object

In this example, the HDL simulator makes repeated calls to matlabcp to bind multiple
HDL instances to the same MATLAB function. Each call contains -argument as a
constructor parameter to differentiate behavior.
> matlabcp u1_filter1x -mfunc osc_filter -use_instance_obj -argument “oversample=1”

> matlabcp u1_filter8x -mfunc osc_filter -use_instance_obj -argument “oversample=8”

> matlabcp u2_filter8x -mfunc osc_filter -use_instance_obj -argument “oversample=8”

The MATLAB function callback, osc_filter.m, sets up user instance-based state using
obj.userdata, queries port and simulation context using other obj fields, and uses the
passed in obj.argument to differentiate behavior.
function osc_filter(obj)

  if (strcmp(obj.simstatus,'Init'))

    ud = struct('Nbits', 22, 'Norder', 31, 'clockperiod', 80e-9, 'phase', 1));

    eval(obj.argument);

    if (~exist('oversample','var'))
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        error('HdlLinkDemo:UseInstanceObj:BadCtorArg', ...

        'Bad constructor arg to osc_filter callback. Expecting 

     ''oversample=value''.');

    end

    ud.oversample        = oversample;

    ud.oversampleperiod  = ud.clockperiod/ud.oversample;

    ud.InDelayLine       = zeros(1,ud.Norder+1);

    centerfreq = 70/256;

    passband   = [centerfreq-0.01, centerfreq+0.01];

    b          = fir1((ud.Norder+1)*ud.oversample-1, passband./ud.oversample);

    ud.Hresp             = ud.oversample .* b;

    obj.userdata = ud;

  end

...

Writing Functions Using Port Information

• “MATLAB Function Syntax and Function Argument Definitions” on page 10-32
• “Oscfilter Function Example” on page 10-34
• “Gaining Access to and Applying Port Information” on page 10-35

MATLAB Function Syntax and Function Argument Definitions

The syntax of a MATLAB component function is

function [oport, tnext] = MyFunctionName(iport, tnow, portinfo)

The syntax of a MATLAB test bench function is

function [iport, tnext] = MyFunctionName(oport, tnow, portinfo)

The input/output arguments (iport and oport) for a MATLAB component function
are the reverse of the port arguments for a MATLAB test bench function. That is, the
MATLAB component function returns signal data to the outputs and receives data from
the inputs of the associated HDL module.

For more information on using tnext and tnow for simulation scheduling, see “Schedule
Component Functions Using the tnext Parameter” on page 3-15.

The following table describes each of the test bench and component function parameters
and the roles they play in each of the functions.

Parameter Test Bench Component

iport Output Input
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Parameter Test Bench Component

Structure that forces (by
deposit) values onto signals
connected to input ports of the
associated HDL module.

Structure that receives signal
values from the input ports
defined for the associated HDL
module at the time specified by
tnow.

tnext Output, optional
Specifies the time at which
the HDL simulator schedules
the next callback to MATLAB.
tnext should be initialized
to an empty value ([]). If
tnext is not later updated, no
new entries are added to the
simulation schedule.

Output, optional
Same as test bench.

oport Input
Structure that receives signal
values from the output ports
defined for the associated HDL
module at the time specified by
tnow.

Output
Structure that forces (by
deposit) values onto signals
connected to output ports of the
associated HDL module.

tnow Input
Receives the simulation time
at which the MATLAB function
is called. By default, time is
represented in seconds. For
more information see “Schedule
Component Functions Using
the tnext Parameter” on page
3-15.

Same as test bench.
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Parameter Test Bench Component

portinfo Input
For the first call to the
function only (at the start of
the simulation) , portinfo
receives a structure whose
fields describe the ports
defined for the associated HDL
module. For each port, the
portinfo structure passes
information such as the port's
type, direction, and size.

Same as test bench.

If you are using matlabcp, initialize the function outputs to empty values at the
beginning of the function as in the following example:

tnext = [];

oport = struct();

Note: When you import VHDL signals, signal names in iport, oport, and portinfo
are returned in all capitals.

You can use the port information to create a generic MATLAB function that operates
differently depending on the port information supplied at startup. For more information
on port data, see “Gaining Access to and Applying Port Information” on page 10-35.

Oscfilter Function Example

The following code gives the definition of the oscfilter MATLAB component function.

function [oport,tnext] = oscfilter(iport, tnow, portinfo)

The function name oscfilter, differs from the entity name u_osc_filter. Therefore,
the component function name must be passed in explicitly to the matlabcp command
that connects the function to the associated HDL instance using the -mfunc parameter.

The function definition specifies all required input and output parameters, as listed here:

oport Forces (by deposit) values onto the signals connected to the entity's output
ports, filter1x_out, filter4x_out and filter8x_out.
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tnext Specifies a time value that indicates when the HDL simulator will
execute the next callback to the MATLAB function.

iport Receives HDL signal values from the entity's input port, osc_in.
tnow Receives the current simulation time.
portinfo For the first call to the function, receives a structure that describes the

ports defined for the entity.

The following figure shows the relationship between the HDL entity's ports and the
MATLAB function's iport and oport parameters (example shown is for use with
ModelSim).

osc_filter.vhd

Input Signals Output Signals

iport.osc_in
oport.filter1x_out
oport.filter4x_out
oport.filter8x_out

Gaining Access to and Applying Port Information

HDL Verifier software passes information about the entity or module under test in the
portinfo structure. The portinfo structure is passed as the third argument to the
function. It is passed only in the first call to your ModelSim function. You can use the
information passed in the portinfo structure to validate the entity or module under
simulation. Three fields supply the information, as indicated in the next sample. . The
content of these fields depends on the type of ports defined for the VHDL entity or
Verilog module.

portinfo.field1.field2.field3

The following table lists possible values for each field and identifies the port types for
which the values apply.

HDL Port Information

Field... Can Contain... Which... And Applies to...

in Indicates the port is an input port All port types
out Indicates the port is an output

port
All port types

field1

inout Indicates the port is a
bidirectional port

All port types
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Field... Can Contain... Which... And Applies to...

tscale Indicates the simulator resolution
limit in seconds as specified in
the HDL simulator

All types

field2 portname Is the name of the port All port types
type Identifies the port type

For VHDL: integer, real,
time, or enum

For Verilog: 'verilog_logic'
identifies port types reg, wire,
integer

All port types

right

(VHDL only)

The VHDL RIGHT attribute VHDL integer, natural, or
positive port types

field3

left

(VHDL only)

The VHDL LEFT attribute VHDL integer, natural, or
positive port types

size VHDL: The size of the matrix
containing the data

Verilog: The size of the bit vector
containing the data

All port types 

label VHDL: A character literal or
label

Verilog: the character vector
'01ZX'

VHDL: Enumerated types,
including predefined
types BIT, STD_LOGIC,
STD_ULOGIC, BIT_VECTOR, and
STD_LOGIC_VECTOR

Verilog: All port types

The first call to the ModelSim function has three arguments including the portinfo
structure. Checking the number of arguments is one way you can verify that portinfo
was passed. For example:

if(nargin ==3)

 tscale  = portinfo.tscale;

end
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Simulation Speed Improvement Tips

In this section...

“Obtaining Baseline Performance Numbers” on page 10-37
“Analyzing Simulation Performance” on page 10-37
“Cosimulating Frame-Based Signals with Simulink” on page 10-38

Obtaining Baseline Performance Numbers

You can baseline the performance numbers by timing the execution of the HDL and
the Simulink model separately and adding them together; you may not expect better
performance than that. Make sure that the separate simulations are representative:
running an HDL-only simulator with unrealistic input stimulus could be much faster
than when realistic input stimulus is provided.

Analyzing Simulation Performance

While cosimulation entails a certain amount of overhead, sometimes the HDL simulation
itself also slows performance. Ask yourself these questions when trying to analyze and
improve performance:

Consideration Suggestions for Improving Speed

Are you are using NFS or other remote file
systems?

How fast is the file system? Consider
using a different type or expect that
the file system you're using will impact
performance.

Are you using separate machines for
Simulink and the HDL simulator?

How fast is the network? Wait until the
network is quieter or contact your system
administrator for advice on improving the
connection.

Are you using the same machine for
Simulink and the HDL simulator?

• Are you using shared pipes instead of
sockets? Shared memory is faster.

• Are the Simulink and HDL processes
large enough to cause swaps to disk?
Consider adding more memory;
otherwise be aware that you're running
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Consideration Suggestions for Improving Speed

a huge process and expect it to impact
performance.

Are you using optimal (that is, as large
as possible) Simulink sample rates on the
HDL Cosimulation block?

For example, if you set the output sample
rate to 1 but only use every 10th sample,
you could make the rate 10 and reduce
the traffic between Simulink and the HDL
simulator.

Another example is if you place a very fast
clock as an input to the HDL Cosimulation
block, but have none of the other inputs
need such a fast rate. In that case, you
should generate the clock in HDL or
(Incisive and ModelSim users only) via the
Clocks or Simulation pane on the HDL
Cosimulation block.

ModelSim users: Are you compiling/
elaborating the HDL using the vopt flow?

Use -voptargs=+acc to optimize your
design for maximum (HDL) simulator
speed (ModelSim users only).

Are you using Simulink Accelerator™
mode?

Acceleration mode can speed up the
execution of your model. See "Accelerating
Models” in the Simulink User's Guide.

If you have the Communications System
Toolbox software, have you considered
using Framed signals?

Framed signals reduce the number of
Simulink/HDL interactions.

Cosimulating Frame-Based Signals with Simulink

Overview to Cosimulation with Frame-Based Signals

Frame-based processing can improve the computational time of your Simulink models,
because multiple samples can be processed at once. Use of frame-based signals also lets
you simulate the behavior of frame-based systems more realistically. The HDL Simulator
block supports processing of single-channel frame-based signals.
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A frame of data is a collection of sequential samples from a single channel or multiple
channels. One frame of a single-channel signal is represented by a M-by-1 column vector.
A signal is frame based if it is propagated through a model one frame at a time.

Frame-based processing requires the DSP System Toolbox software. Source blocks from
the Sources library let you specify a frame-based signal by setting the Samples per
frame block parameter. Most other signal processing blocks preserve the frame status of
an input signal. You can use the Buffer block to buffer a sequence of samples into frames.

See “Working with Signals” in the DSP System Toolbox documentation for detailed
information about frame-based processing.

Using Frame-Based Processing

You do not need to configure the HDL Simulator block in any special way for frame-based
processing. To use frame-based processing in a cosimulation, connect one or more single-
channel frame-based signals to one or more input ports of the HDL Simulator block.
All such signals must meet the requirements described in “Frame-Based Processing
Requirements and Restrictions” on page 10-39. The HDL Simulator block configures
any outputs for frame-based operation at the suitable frame size.

Use of frame-based signals affects only the Simulink side of the cosimulation. The
behavior of the HDL code under simulation in the HDL simulator does not change
in any way. Simulink assumes that HDL simulator processing is sample based.
Simulink assembles samples acquired from the HDL simulator into frames as required.
Conversely, Simulink transmits output data to the HDL simulator in frames, which are
unpacked and processed by the HDL simulator one sample at a time.

Frame-Based Processing Requirements and Restrictions

Observe the following restrictions and requirements when connecting frame-based
signals in to an HDL Simulator block:

• Connection of mixed frame-based and sample-based signals to the same HDL
Simulator block is not supported.

• Only single-channel frame-based signals can be connected to the HDL Simulator
block. Use of multichannel (matrix) frame-based signals is not supported in this
release.

• All frame-based signals connected to the HDL Simulator block must have the same
frame size.
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Frame-based processing in the Simulink model is transparent to the operation of the
HDL model under simulation in the HDL simulator. The HDL model is presumed to be
sample-based. The following constraint also applies to the HDL model under simulation
in the HDL simulator:
Specify VHDL signals as scalars values, not vectors or arrays (with the exception of bit
vectors. VHDL and Verilog bit vectors are converted to the suitably-sized fixed-point
scalar data type by the HDL Cosimulation block).

Frame-Based Cosimulation Example

This example shows the use of the HDL Simulator block to cosimulate a VHDL
implementation of a simple lowpass filter. In the example, you will compare the
performance of the simulation using frame-based and sample-based signals.

Note: This tutorial is specific to ModelSim users; however, much of the process will be
the same for Incisive users.

The example files are (in matlabroot):

• The example model:
\toolbox\edalink\extensions\modelsim\modelsimdemos\frame_filter_cosim 

• VHDL code for the filter to be cosimulated:
\toolbox\edalink\extensions\modelsim\modelsimdemos\VHDL\frame_demos\lp_fir_8k.vhd

The filter was designed with Filter Designer and the code was generated by the Filter
Design HDL Coder™.

The example uses the data file matlabroot\toolbox\signal\signal\mtlb.mat
as an input signal. This file contains a speech signal. The sample data is of data type
double, sampled at a rate of 8 kHz.

The next figure shows the frame_filter_cosim model.
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The Audio Source Signal From Workspace block provides an input signal from the
workspace variable mtlb. The block is configured for an 8 kHz sample rate, with a frame
size of 80, as shown in this figure.

The sample rate and frame size of the input signal propagate throughout the model.

The VHDL code file lp_fir_8k.vhd implements a simple lowpass FIR filter with a
cutoff frequency of 1500 Hz. The HDL Simulator block simulates this HDL module. The
HDL Simulator block ports and clock signal are configured to match the corresponding
signals on the VHDL entity.

For the ModelSim simulation to execute as we want it to, the clk_enable signal of
the lp_fir_8k entity must be forced high. The signal is forced by a pre-simulation
command transmitted by the HDL Simulator block. The command has been entered
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into the Simulation pane of the HDL Simulator block, as shown in the following figure
(example shown for use with ModelSim).

The HDL Simulator block returns output in the workspace variable audiobuff1 via the
Filtered Signal To Workspace block.

To run the cosimulation, perform the following steps:

1 Start MATLAB and make it your active window.
2 Set up and change to a writable working folder that is outside the context of your

MATLAB installation folder.
3 Add the example folder to the MATLAB path:

matlabroot\toolbox\edalink\extensions\modelsim\modelsimdemos\frame_cosim

4 Copy the VHDL file lp_fir_8k.vhd to your working folder.
5 Open the example model.

open frame_filter_cosim.mdl
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6 Load the source speech signal, which will be filtered, into the MATLAB workspace.

 load mtlb

If you have a compatible sound card, you can play back the source signal by typing
the following commands at the MATLAB command prompt:

a = audioplayer(mtlb,8000);

play(a);

7 Start ModelSim by typing the following command at the MATLAB command prompt:

vsim

The ModelSim window should now be active. If not, start it.
8 At the ModelSim prompt, create a design library, and compile the VHDL filter code

from the source file lp_fir_8k.vhd, by typing the following commands:

vlib work

vmap work work

vcom lp_fir_8k.vhd

9 The lowpass filter to be simulated is defined as the entity lp_fir_8k. At the
ModelSim prompt, load the instantiated entity lp_fir_8k for cosimulation:

vsimulink lp_fir_8k

ModelSim is now set up for cosimulation.
10 Start MATLAB. Run a simulation and measure elapsed time as follows:

t = clock; sim(gcs); etime(clock,t)

ans =

    2.7190

The timing in this code excerpt is typical for a run of this model given a simulation
Stop time of 1 second and a frame size of 80 samples. Timings are system-
dependent and will vary slightly from one simulation run to the next.

Take note of the timing you obtained. For the next simulation run, you will change
the model to sample-based operation and obtain a comparative timing.

11 MATLAB stores the filtered audio signal returned from ModelSim in the workspace
variable audiobuff1. If you have a compatible sound card, you can play back the
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filtered signal to hear the effect of the lowpass filter. Play the signal by typing the
following commands at the MATLAB command prompt:

b = audioplayer(audiobuff1,8000);

play(b);

12 Open the block parameters dialog box of the Audio Source Signal From
Workspace block and set the Samples per frame property to 1, as shown in this
figure.

13 Close the dialog box, and select the Simulink window. Select Simulation > Update
diagram.

Now the source signal (and all signals inheriting from it) is a scalar.
14 Start ModelSim. At the ModelSim prompt, type
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restart

15 Start MATLAB. Run a simulation and measure elapsed time as follows:

t = clock; sim(gcs); etime(clock,t)

ans =

    3.8440

Observe that the elapsed time has increased significantly with a sample-based input
signal. The timing in this code excerpt is typical for a sample-based run of this model
given a simulation Stop time of 1 second. Timings are system-dependent and will
vary slightly from one simulation run to the next.

16 Close down the simulation in an orderly way. In ModelSim, stop the simulation
by selecting Simulate > End Simulation, and quit ModelSim. Then, close the
Simulink model window.
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Race Conditions in HDL Simulators

In this section...

“Avoiding Race Conditions” on page 10-46
“Potential Race Conditions in Simulink Cosimulation Sessions” on page 10-46
“Potential Race Conditions in MATLAB Cosimulation Sessions” on page 10-47
“Further Reading” on page 10-48

Avoiding Race Conditions

A well-known issue in hardware simulation is the potential for different results on
different runs when race conditions are present. Because the HDL simulator is a highly
parallel execution environment, you must write the HDL such that the results do not
depend on the ordering of process execution.

Although there are well-known coding idioms for achieving a realistic simulation of a
design under test, you must always take special care at the test bench/DUT interfaces
for applying stimulus and reading results, even in pure HDL environments. For an HDL/
foreign language interface, such as with a Simulink or MATLAB cosimulation session,
the problem is compounded if you do not have a common synchronization signal, such as
a clock, coordinating the flow of data.

Potential Race Conditions in Simulink Cosimulation Sessions

All the signals on the interface of an HDL Cosimulation block in the Simulink library
have an intrinsic sample rate associated with them. This sample rate can be thought of
as an implicit clock that controls the simulation time at which a value change can occur.
Because this implicit clock is completely unknown to the HDL engine (that is, it is not an
HDL signal), the times at which input values are driven into the HDL or output values
are sampled from the HDL are asynchronous to any clocks coded in HDL directly, even if
they are nominally at the same frequency.

For Simulink value changes scheduled to occur at a specific simulation time, the HDL
simulator does not make any guarantees as to the order that value change occurs versus
some other blocking signal assignment. Thus, if the Simulink values are driven/sampled
at the same time as an active clock edge in the HDL, there is a race condition.
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For cases where your active HDL clock edge and your intrinsic Simulink active clock
edges are at the same frequency, you can promote desired data propagation by offsetting
one of those edges. Because the Simulink sample rates are always aligned with time 0,
you can accomplish this offset by shifting the active clock edge in the HDL off of time
0. If you are coding the clock stimulus in HDL, use a delay operator ("after" or "#") to
accomplish this offset.

When using a Tcl "force" command to describe the clock waveform, you can simply put
the first active edge at some nonzero time. Using a nonzero value allows a Simulink
sample rate that is the same as the fundamental clock rate in your HDL. This example
shows a 20 ns clock (so the Simulink sample rates will also be every 20 ns) with an active
positive edge that is offset from time 0 by 2 ns (example shown for use with Incisive):
> force top.clk = 1’b0 -after 0 ns 1’b1 -after 2 ns 1’b0

             -after 12 ns -repeat 20 ns

For HDL Cosimulation blocks with Clock panes, you can define the clock period and
active edge in that pane. The waveform definition places the non-active edge at time 0
and the active edge at time T/2. This placement sets the maximum setup and hold times
for a clock with a 50% duty cycle.

If the Simulink sample rates are at a different frequency than the HDL clocks, then you
must synchronize the signals between the HDL and Simulink as you would do with any
multiple time-domain design, even one in pure HDL. For example, you can place two
synchronizing flip-flops at the interface.

If your cosimulation does not include clocks, then you must also treat the interfacing of
Simulink and the HDL code as being between asynchronous time domains. You may need
to over-sample outputs to see that all data transitions are captured.

Potential Race Conditions in MATLAB Cosimulation Sessions

When you use the -sensitivity, -rising_edge, or -falling_edge scheduling
options to matlabtb or matlabcp to trigger MATLAB function calls, the propagation of
values follow the same semantics as a pure HDL design; the triggers must occur before
the results can be calculated. You still can have race conditions, but they can be analyzed
within the HDL alone.

However, when you use the -time scheduling option to matlabtb or matlabcp, or use
tnext within the MATLAB function itself, the driving of signal values or sampling of
signal values cannot be guaranteed in relation to any HDL signal changes. It is as if the
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potential race conditions in that time-based scheduling are like an implicit clock that is
unknown to the HDL engine and not visible by just looking at the HDL code.

The remedies are the same as for the Simulink signal interfacing: make sure that the
sampling and driving of signals does not occur at the same simulation times as the
MATLAB function calls.

Further Reading

Problems interfacing designs from test benches and foreign languages, including race
conditions in pure HDL environments, are well-known and extensively documented.
Some texts that describe these issues include:

• The documentation for each vendor’s HDL simulator product
• The HDL standards specifications
• Writing Testbenches: Functional Verification of HDL Models, Janick Bergeron, 2nd

edition, © 2003
• Verilog and SystemVerilog Gotchas, Stuart Sutherland and Don Mills, © 2007
• SystemVerilog for Verification: A Guide to Learning the Testbench Language

Features, Chris Spear, © 2007
• Principles of Verifiable RTL Design, Lionel Bening and Harry D. Foster, © 2001
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Data Type Conversions
In this section...

“Converting HDL Data to Send to MATLAB” on page 10-49
“Array Indexing Differences Between MATLAB and HDL” on page 10-51
“Converting Data for Manipulation” on page 10-52
“Converting Data for Return to the HDL Simulator” on page 10-53

Converting HDL Data to Send to MATLAB

If your HDL application needs to send HDL data to a MATLAB function, you may first
need to convert the data to a type supported by MATLAB and the HDL Verifier software.

To program a MATLAB function for an HDL model, you must understand the type
conversions required by your application. You may also need to handle differences
between the array indexing conventions used by the HDL you are using and MATLAB
(see following section).

The data types of arguments passed in to the function determine the following:

• The types of conversions required before data is manipulated
• The types of conversions required to return data to the HDL simulator

The following table summarizes how the HDL Verifier software converts supported
VHDL data types to MATLAB types based on whether the type is scalar or array.

VHDL-to-MATLAB Data Type Conversions

VHDL Types... As Scalar Converts to... As Array Converts to...

STD_LOGIC, STD_ULOGIC, and
BIT

A character that matches
the character literal for the
desired logic state.

 

STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED, and
UNSIGNED

  A column vector of characters (as
defined in VHDL Conversions for
the HDL Simulator) with one bit
per character.

Arrays of STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,

  An array of characters (as
defined above) with a size that is
equivalent to the VHDL port size.
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VHDL Types... As Scalar Converts to... As Array Converts to...

BIT_VECTOR, SIGNED, and
UNSIGNED

INTEGER and NATURAL Type int32. Arrays of type int32 with a size
that is equivalent to the VHDL
port size.

REAL Type double. Arrays of type double with a size
that is equivalent to the VHDL
port size.

TIME Type double for time values
in seconds and type int64
for values representing
simulator time increments
(see the description of
the 'time' option in
hdldaemon).

Arrays of type double or int64
with a size that is equivalent to
the VHDL port size.

Enumerated types Character vector that
contains the MATLAB
representation of a VHDL
label or character literal.
For example, the label high
converts to 'high' and the
character literal 'c' converts
to '''c'''.

Cell array of character vectors
with each element equal to a label
for the defined enumerated type.
Each element is the MATLAB
representation of a VHDL
label or character literal. For
example, the vector (one, '2',
three) converts to the column
vector ['one'; '''2''';
'three']. A user-defined
enumerated type that contains
only character literals, and then
converts to a vector or array
of characters as indicated for
the types STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED, and
UNSIGNED.

The following table summarizes how the HDL Verifier software converts supported
Verilog data types to MATLAB types. The software supports only scalar data types for
Verilog.
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Verilog-to-MATLAB Data Type Conversions

Verilog Types... Converts to...

wire, reg A character or a column vector of characters
that matches the character literal for the
desired logic states (bits).

integer A 32-element column vector of characters that
matches the character literal for the desired
logic states (bits).

Array Indexing Differences Between MATLAB and HDL

In multidimensional arrays, the same underlying OS memory buffer maps to different
elements in MATLAB and the HDL simulator (this mapping only reflects different ways
the different languages offer for naming the elements of the same array). When you use
both the matlabtb and matlabcp functions, be careful to assign and interpret values
consistently in both applications.

In HDL, a multidimensional array declared as:
type matrix_2x3x4 is array (0 to 1, 4 downto 2) of std_logic_vector(8 downto 5);

has a memory layout as follows:
bit   01 02 03 04  05 06 07 08  09 10 11 12  13 14 15 16  17 18 19 20  21 22 23 24

 -

 dim1 0  0  0  0   0  0  0  0   0  0  0  0   1  1  1  1   1  1  1  1   1  1  1  1

 dim2 4  4  4  4   3  3  3  3   2  2  2  2   4  4  4  4   3  3  3  3   2  2  2  2

 dim3 8  7  6  5   8  7  6  5   8  7  6  5   8  7  6  5   8  7  6  5   8  7  6  5

This same layout corresponds to the following MATLAB 4x3x2 matrix:
 bit  01 02 03 04  05 06 07 08  09 10 11 12  13 14 15 16  17 18 19 20  21 22 23 24

 -

 dim1 1  2  3  4   1  2  3  4   1  2  3  4   1  2  3  4   1  2  3  4   1  2  3  4 

 dim2 1  1  1  1   2  2  2  2   3  3  3  3   1  1  1  1   2  2  2  2   3  3  3  3 

 dim3 1  1  1  1   1  1  1  1   1  1  1  1   2  2  2  2   2  2  2  2   2  2  2  2

Therefore, if H is the HDL array and M is the MATLAB matrix, the following indexed
values are the same:

 b1  H(0,4,8) = M(1,1,1)

 b2  H(0,4,7) = M(2,1,1)

 b3  H(0,4,6) = M(3,1,1)

 b4  H(0,4,5) = M(4,1,1)

 b5  H(0,3,8) = M(1,2,1)

 b6  H(0,3,7) = M(2,2,1)

10-51



10 HDL Cosimulation Reference

 ...

 b19 H(1,3,6) = M(3,2,2)

 b20 H(1,3,5) = M(4,2,2)

 b21 H(1,2,8) = M(1,3,2)

 b22 H(1,2,7) = M(2,3,2)

 b23 H(1,2,6) = M(3,3,2)

 b24 H(1,2,5) = M(4,3,2)

You can extend this indexing to N-dimensions. In general, the dimensions—if numbered
from left to right—are reversed. The right-most dimension in HDL corresponds to the
left-most dimension in MATLAB.

Converting Data for Manipulation

Depending on how your simulation MATLAB function uses the data it receives from the
HDL simulator, you may need to code the function to convert data to a different type
before manipulating it. The following table lists circumstances under which you would
require such conversions.

Required Data Conversions

If You Need the Function to... Then...

Compute numeric data that is
received as a type other than
double

Use the double function to convert the data to type
double before performing the computation. For
example:

datas(inc+1) = double(idata);

Convert a standard logic or
bit vector to an unsigned
integer or positive decimal

Use the mvl2dec function to convert the data to an
unsigned decimal value. For example:

uval = mvl2dec(oport.val)

This example assumes the standard logic or bit vector
is composed of the character literals '1' and '0' only.
These are the only two values that can be converted to
an integer equivalent.

The mvl2dec function converts the binary data that the
MATLAB function receives from the entity's osc_in
port to unsigned decimal values that MATLAB can
compute.
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If You Need the Function to... Then...

See mvl2dec for more information on this function.
Convert a standard logic
or bit vector to a negative
decimal

Use the following application of the mvl2dec function to
convert the data to a signed decimal value. For example:
suval = mvl2dec(oport.val, true);

This example assumes the standard logic or bit vector
is composed of the character literals '1' and '0' only.
These are the only two values that can be converted to
an integer equivalent.

Examples

The following code excerpt illustrates data type conversion of data passed in to a
callback:
InDelayLine(1) = InputScale * mvl2dec(iport.osc_in',true);

This example tests port values of VHDL type STD_LOGIC and STD_LOGIC_VECTOR by
using the all function as follows:

all(oport.val == '1' | oport.val 

== '0')

This example returns True if all elements are '1' or '0'.

Converting Data for Return to the HDL Simulator

If your simulation MATLAB function needs to return data to the HDL simulator, you
may first need to convert the data to a type supported by the HDL Verifier software. The
following tables list circumstances under which such conversions are required for VHDL
and Verilog.

Note: When data values are returned to the HDL simulator, the char array size must
match the HDL type, including leading zeroes, if applicable. For example:

oport.signal = dec2mvl(2)

will only work if signal is a 2-bit type in HDL. If the HDL type is anything else, you
must specify the second argument:
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oport.signal = dec2mvl(2, N)

where N is the number of bits in the HDL data type.

VHDL Conversions for the HDL Simulator

To Return Data to an IN Port of
Type...

Then...

STD_LOGIC, STD_ULOGIC, or
BIT

Declare the data as a character that matches the character literal
for the desired logic state. For STD_LOGIC and STD_ULOGIC, the
character can be 'U', 'X', '0', '1', 'Z', 'W', 'L', 'H', or '-'.
For BIT, the character can be '0' or '1'. For example:

iport.s1 = 'X'; %STD_LOGIC

iport.bit = '1'; %BIT

STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED, or
UNSIGNED

Declare the data as a column vector or row vector of characters (as
defined above) with one bit per character. For example:
iport.s1v = 'X10ZZ'; %STD_LOGIC_VECTOR

iport.bitv = '10100'; %BIT_VECTOR

iport.uns = dec2mvl(10,8); %UNSIGNED, 8 bits

Array of
STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED, or
UNSIGNED

Declare the data as an array of type character with a size that is
equivalent to the VHDL port size. See “Array Indexing Differences
Between MATLAB and HDL” on page 10-51.

INTEGER or NATURAL Declare the data as an array of type int32 with a size that is
equivalent to the VHDL array size. Alternatively, convert the data
to an array of type int32 with the MATLAB int32 function before
returning it. Be sure to limit the data to values with the range of
the VHDL type. If you want to, check the right and left fields of
the portinfo structure. For example:

iport.int = int32(1:10)';

REAL Declare the data as an array of type double with a size that is
equivalent to the VHDL port size. For example:

iport.dbl = ones(2,2); 

TIME Declare a VHDL TIME value as time in seconds, using type double,
or as an integer of simulator time increments, using type int64.
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To Return Data to an IN Port of
Type...

Then...

You can use the two formats interchangeably and what you
specify does not depend on the hdldaemon 'time' option (see
hdldaemon), which applies to IN ports only. Declare an array of
TIME values by using a MATLAB array of identical size and shape.
All elements of a given port are restricted to time in seconds (type
double) or simulator increments (type int64), but otherwise you
can mix the formats. For example:

iport.t1 = int64(1:10)'; %Simulator time

                         %increments

iport.t2 = 1e-9; %1 nsec

Enumerated types Declare the data as a character vector for scalar ports or a cell
array of character vectors for array ports with each element equal
to a label for the defined enumerated type. The 'label' field of
the portinfo structure lists all valid labels (see “Gaining Access
to and Applying Port Information” on page 10-35). Except for
character literals, labels are not case sensitive. In general, you
should specify character literals completely, including the single
quotes, as in the first example shown here. .
iport.char = {'''A''', '''B'''}; %Character

                                 %literal

iport.udef = 'mylabel'; %User-defined label

Character array for standard
logic or bit representation

Use the dec2mvl function to convert the integer. For example:

oport.slva =dec2mvl([23 99],8)';

This example converts two integers to a 2-element array of
standard logic vectors consisting of 8 bits.

Verilog Conversions for the HDL Simulator

To Return Data to an input
Port of Type...

Then...

reg, wire Declare the data as a character or a column vector of characters
that matches the character literal for the desired logic state. For
example:

iport.bit = '1'; 
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To Return Data to an input
Port of Type...

Then...

integer Declare the data as a 32-element column vector of characters (as
defined above) with one bit per character.
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Simulation Timescales

In this section...

“Overview to the Representation of Simulation Time” on page 10-57
“Defining the Simulink and HDL Simulator Timing Relationship” on page 10-58
“Setting the Timing Mode with HDL Verifier” on page 10-58
“Relative Timing Mode” on page 10-60
“Absolute Timing Mode” on page 10-65
“Timing Mode Usage Considerations” on page 10-67
“Setting HDL Cosimulation Block Port Sample Times” on page 10-69

Overview to the Representation of Simulation Time

The representation of simulation time differs significantly between the HDL simulator
and Simulink. Each application has its own timing engine and the verification software
must synchronize the simulation times between the two.

In the HDL simulator, the unit of simulation time is referred to as a tick. The duration of
a tick is defined by the HDL simulator resolution limit. The default resolution limit is 1
ns, but may vary depending on the simulator.

• ModelSim Users:

To determine the current ModelSim resolution limit, enter echo $resolution or
report simulator state at the ModelSim prompt. You can override the default
resolution limit by specifying the -t option on the ModelSim command line, or by
selecting a different Simulator Resolution in the ModelSim Simulate dialog box.
Available resolutions in ModelSim are 1x, 10x, or 100x in units of fs, ps, ns, us, ms, or
sec. See the ModelSim documentation for further information.

• Incisive Users:

To determine the current HDL simulator resolution limit, enter echo $timescale
at the HDL simulator prompt. See the HDL simulator documentation for further
information.

Simulink maintains simulation time as a double-precision value scaled to seconds. This
representation accommodates modeling of both continuous and discrete systems.
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The relationship between Simulink and the HDL simulator timing affects the following
aspects of simulation:

• Total simulation time
• Input port sample times
• Output port sample times
• Clock periods

During a simulation run, Simulink communicates the current simulation time to the
HDL simulator at each intermediate step. (An intermediate step corresponds to a
Simulink sample time hit. Upon each intermediate step, new values are applied at input
ports, or output ports are sampled.)

To bring the HDL simulator up-to-date with Simulink during cosimulation, you must
convert sampled Simulink time to HDL simulator time (ticks) and allow the HDL
simulator to run for the computed number of ticks.

Defining the Simulink and HDL Simulator Timing Relationship

The differences in the representation of simulation time can be reconciled in one of two
ways using the HDL Verifier interface:

• By defining the timing relationship manually (with Timescales pane)

When you define the relationship manually, you determine how many femtoseconds,
picoseconds, nanoseconds, microseconds, milliseconds, seconds, or ticks in the HDL
simulator represent 1 second in Simulink.

• By allowing HDL Verifier to define the timescale (with Timescales pane)

When you allow the software to define the timing relationship, it attempts to set the
timescale factor between the HDL simulator and Simulink to be as close as possible to
1 second in the HDL simulator = 1 second in Simulink. If this setting is not possible,
HDL Verifier attempts to set the signal rate on the Simulink model port to the lowest
possible number of HDL simulator ticks.

Setting the Timing Mode with HDL Verifier

The Timescales pane of the HDL Cosimulation block parameters dialog box defines
a correspondence between one second of Simulink time and some quantity of HDL
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simulator time. This quantity of HDL simulator time can be expressed in one of the
following ways:

• In relative terms (i.e., as some number of HDL simulator ticks). In this case, the
cosimulation is said to operate in relative timing mode. The HDL Cosimulation block
defaults to relative timing mode for cosimulation. For more on relative timing mode,
see “Relative Timing Mode” on page 10-60.

• In absolute units (such as milliseconds or nanoseconds). In this case, the cosimulation
is said to operate in absolute timing mode. For more on absolute timing mode, see
“Absolute Timing Mode” on page 10-65.

The Timescales pane lets you choose an optimal timing relationship between Simulink
and the HDL simulator, either by entering the HDL simulator equivalent or by letting
HDL Verifier calculate a timescale for you.

You can choose to have HDL Verifier calculate a timescale while you are setting
the parameters on the block dialog by clicking the Timescale option then clicking
Determine Timescale Now or you can have HDL Verifier calculate the timescale
when simulation begins by selecting Automatically determine timescale at start of
simulation.

The next figure shows the default settings of the Timescales pane (example shown is for
use with ModelSim).
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For instructions on setting the timing mode either manually or with the Timescales
dialog box, see the Timescales pane in the HDL Cosimulation block reference.

Relative Timing Mode

Relative timing mode defines the following one-to-one correspondence between
simulation time in Simulink and the HDL simulator:
One second in Simulink corresponds to N ticks in the HDL simulator, where N is a scale
factor.

This correspondence holds regardless of the HDL simulator timing resolution.

The following pseudocode shows how Simulink time units are converted to HDL
simulator ticks:
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InTicks = N * tInSecs

where InTicks is the HDL simulator time in ticks, tInSecs is the Simulink time in
seconds, and N is a scale factor.

Operation of Relative Timing Mode

The HDL Cosimulation block defaults to relative timing mode, with a scale factor of 1.
Thus, 1 Simulink second corresponds to 1 tick in the HDL simulator. In the default case:

• If the total simulation time in Simulink is specified as N seconds, then the HDL
simulation will run for exactly N ticks (i.e., N ns at the default resolution limit).

• Similarly, if Simulink computes the sample time of an HDL Cosimulation block input
port as Tsi seconds, new values will be deposited on the HDL input port at exact
multiples of Tsi ticks. If an output port has an explicitly specified sample time of Tso
seconds, values will be read from the HDL simulator at multiples of Tso ticks.

Relative Timing Mode Example

To understand how relative timing mode operates, review cosimulation results from the
following example model.

For Use with ModelSim

The model contains an HDL Cosimulation block (labeled “VHDL Cosimulation
INVERTER”) simulating an 8-bit inverter that is enabled by an explicit clock. The
inverter has a single input and a single output. The following sample shows VHDL code
for the inverter:

LIBRARY ieee;
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USE ieee.std_logic_1164.ALL;

ENTITY inverter IS PORT (

  

  inport : IN  std_logic_vector := "11111111";

  outport: OUT std_logic_vector := "00000000";

  clk:IN  std_logic

);

END inverter;

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ARCHITECTURE behavioral OF inverter IS

BEGIN

  PROCESS(clk)

  BEGIN

    IF (clk'EVENT AND clk = '1') THEN

        outport <= NOT inport;

    END IF;

  END PROCESS;

END behavioral;

A cosimulation of this model might have the following settings:

• Simulation parameters in Simulink:

• Timescales parameters: default (relative timing with a scale factor of 1)
• Total simulation time: 60 s
• Input port (/inverter/inport) sample time: 24 s
• Output port (/inverter/outport ) sample time: 12 s
• Clock (inverter/clk) period: 10 s

• ModelSim resolution limit: 1 ns

The next figure shows the ModelSim wave window after a cosimulation run of the
example Simulink model for 60 ns. The wave window shows that ModelSim simulated
for 60 ticks (60 ns). The inputs change at multiples of 24 ns and the outputs are read
from ModelSim at multiples of 12 ns. The clock is driven low and high at intervals of 5
ns.
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Now consider a cosimulation of the same model, this time configured with a scale factor
of 100 in the Timescales pane.

The ModelSim wave window in the next figure shows that Simulink port and clock times
were scaled by a factor of 100 during simulation. ModelSim simulated for 6 microseconds
(60 * 100 ns). The inputs change at multiples of 24 * 100 ns and outputs are read from
ModelSim at multiples of 12 * 100 ns. The clock is driven low and high at intervals of 500
ns.
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For Use with Incisive

The model contains an HDL Cosimulation block (labeled HDL_Cosimulation1)
simulating an 8-bit inverter that is enabled by an explicit clock. The inverter has a
single input and a single output. The following code excerpt lists the Verilog code for the
inverter:

module inverter_clock_vl(sin, sout,clk);

input [7:0] sin;

output [7:0] sout;

input clk;
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reg [7:0] sout;

always @(posedge clk) 

  sout <= ! (sin);

endmodule

A cosimulation of this model might have the following settings:

• Simulation parameters in Simulink:

• Timescales parameters: 1 Simulink second = 10 HDL simulator ticks
• Total simulation time: 30 s
• Input port (inverter_clock_vl.sin) sample time: N/A
• Output port (inverter_clock_vl.sout) sample time: 1 s
• Clock (inverter_clock_vl.clk) period: 5 s

• HDL simulator resolution limit: 1 ns

The previous example was excerpted from the HDL Verifier Inverter tutorial. For more
information, see HDL Verifier demos.

Absolute Timing Mode

Absolute timing mode lets you define the timing relationship between Simulink and the
HDL simulator in terms of absolute time units and a scale factor:
One second in Simulink corresponds to (N * Tu) seconds in the HDL simulator, where Tu
is an absolute time unit (for example, ms, ns, etc.) and N is a scale factor.

In absolute timing mode, all sample times and clock periods in Simulink are quantized to
HDL simulator ticks. The following pseudocode illustrates the conversion:

tInTicks = tInSecs * (tScale / tRL)

where:

• tInTicks is the HDL simulator time in ticks.
• tInSecs is the Simulink time in seconds.
• tScale is the timescale setting (unit and scale factor) chosen in the Timescales pane

of the HDL Cosimulation block.
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• tRL is the HDL simulator resolution limit.

For example, given a Timescales pane setting of 1 s and an HDL simulator resolution
limit of 1 ns, an output port sample time of 12 ns would be converted to ticks as follows:

   tInTicks = 12ns * (1s / 1ns) = 12

  

Operation of Absolute Timing Mode

To configure the Timescales parameters for absolute timing mode, you select a unit of
absolute time that corresponds to a Simulink second, rather than selectingTick.

Absolute Timing Mode Example

To understand the operation of absolute timing mode, you will again consider the
example model discussed in “Operation of Relative Timing Mode” on page 10-61.
Suppose that the model is reconfigured as follows:

• Simulation parameters in Simulink:

• Timescale parameters: 1 s of Simulink time corresponds to 1 s of HDL
simulator time.

• Total simulation time: 60e-9 s (60ns)
• Input port (/inverter/inport) sample time: 24e-9 s (24 ns)
• Output port (/inverter/outport) sample time: 12e-9 s (12 ns)
• Clock (inverter/clk) period: 10e-9 s (10 ns)

• HDL simulator resolution limit: 1 ns

Given these simulation parameters, the Simulink software will cosimulate with the HDL
simulator for 60 ns, during which Simulink will sample inputs at a intervals of 24 ns,
update outputs at intervals of 12 ns, and drive clocks at intervals of 10 ns.

The following figure shows a ModelSim wave window after a cosimulation run.
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Timing Mode Usage Considerations

When setting a timescale mode, you may need to choose your setting based on the
following considerations.

• “Timing Mode Usage Restrictions” on page 10-67
• “Noninteger Time Periods” on page 10-68

Timing Mode Usage Restrictions

The following restrictions apply to the use of absolute and relative timing modes:

• When multiple HDL Cosimulation blocks in a model are communicating with a single
instance of the HDL simulator, all HDL Cosimulation blocks must have the same
Timescales pane settings.

• If you change the Timescales pane settings in an HDL Cosimulation block between
consecutive cosimulation runs, you must restart the simulation in the HDL simulator.

• If you specify a Simulink sample time that cannot be expressed as a whole number of
HDL ticks, you will get an error.

10-67



10 HDL Cosimulation Reference

Noninteger Time Periods

When using noninteger time periods, the HDL simulator cannot represent such an
infinitely repeating value. So the simulator truncates the time period, but it does so
differently than how Simulink truncates the value, and the two time periods no longer
match up.

The following example demonstrates how to set the timing relationship in the following

scenario: you want to use a sample period of 1

3Hz
 in Simulink, which corresponds to a

noninteger time period.

The key idea here is that you must always be able to relate a Simulink time with an HDL
tick. The HDL tick is the finest time slice the HDL simulator recognizes; for ModelSim,
the default tick is 1 ns, but it can be made as precise as 1 fs.

However, a 3 Hz signal actually has a period of 333.33333333333... ms, which is not a
valid tick period for the HDL simulator. The HDL simulator will truncate such numbers.
But Simulink does not make the same decision; thus, for cosimulation where you are
trying to keep two independent simulators in synchronization, you should not assume
anything. Instead you have to decide whether it is convenient to truncate or round the
number.

Therefore, the solution is to "snap" either the Simulink sample time or the HDL sample
time (via the timescale) to valid numbers. There are infinite possibilities, but here are
some possible ways to perform a snap:

• Change Simulink sample times from 1/3 sec to 0.33333 sec and set the cosimulation
block timescale to '1 second in Simulink = 1 second in the HDL simulator'. If you are
specifying a clock in the HDL Cosimulation block Clocks pane, its period should be
0.33333 sec.

• Keep Simulink sample times at 1/3 sec. and 1 second in Simulink = 6 ticks in the HDL
simulator.

• If you are specifying a clock in the HDL Cosimulation block Clocks pane, its
period should be 1/3. Briefly, this specification tells Simulink to make each
Simulink sample time correspond to every (1/3*6) = 2 ticks, regardless of the HDL
time resolution.

• If your default HDL simulator resolution is 1 ns, that means your HDL sample
times are every 2 ns. This sample time will work in a way so that for every
Simulink sample time there is a corresponding HDL sample time.
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• However, Simulink thinks in terms of 1/3 sec periods and the HDL in terms of 2
ns periods. Thus, you could get confused during debug. If you want this to match
the real period (such as to 5 places, i.e. 333.33 ms), you can follow the next option
listed.

• Keep Simulink sample times at 1/3 sec and 1 second in Simulink = 0.99999e9 ticks
in the HDL simulator. If you are specifying a clock in the HDL Cosimulation block
Clocks pane, its period should be 1/3.

Setting HDL Cosimulation Block Port Sample Times

In general, Simulink handles the sample time for the ports of an HDL Cosimulation
block as follows:

• If an input port is connected to a signal that has an explicit sample time, based on
forward propagation, Simulink applies that rate to that input port.

• If an input port is connected to a signal that does not have an explicit sample time,
Simulink assigns a sample time that is equal to the least common multiple (LCM) of
all identified input port sample times for the model.

• After Simulink sets the input port sample periods, it applies user-specified output
sample times to all output ports. Sample times must be explicitly defined for all
output ports.

If you are developing a model for cosimulation in relative timing mode, consider the
following sample time guideline:
Specify the output sample time for an HDL Cosimulation block as an integer multiple
of the resolution limit defined in the HDL simulator. Use the HDL simulator command
report simulator state to check the resolution limit of the loaded model. If the HDL
simulator resolution limit is 1 ns and you specify a block's output sample time as 20,
Simulink interacts with the HDL simulator every 20 ns.
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Clock, Reset, and Enable Signals

In this section...

“Driving Clocks, Resets, and Enables” on page 10-70
“Adding Signals Using Simulink Blocks” on page 10-70
“Creating Optional Clocks with the Clocks Pane of the HDL Cosimulation Block” on
page 10-71
“Driving Signals by Adding Force Commands” on page 10-74

Driving Clocks, Resets, and Enables

You can create rising-edge or falling-edge clocks, resets, or clock enable signals that
apply internal stimuli to your model under cosimulation. You can add these signals by:

• “Adding Signals Using Simulink Blocks” on page 10-70
• “Creating Optional Clocks with the Clocks Pane of the HDL Cosimulation Block” on

page 10-71
• “Driving Signals by Adding Force Commands” on page 10-74
• Implementing these signals directly in HDL code. If your model is part of a much

larger HDL design, you (or the larger model designer) may choose to implement these
signals in the Verilog or VHDL files. However, that implementation exceeds the scope
of this documentation; see an HDL reference for more information.

Adding Signals Using Simulink Blocks

Add rising-edge or falling-edge clocks, resets, or clock enable signals to your Simulink
model using Simulink blocks. See the Simulink User Guide and Reference for
instructions on adding blocks to a model.

In the following example excerpt, the shaded area shows a clock, a reset, and a clock
enable signal as input to a multiple HDL Cosimulation block model. These signals are
created using two Simulink data type conversion blocks and a constant source block,
which connect to the HDL Cosimulation block labeled "Manchester Receiver Subsystem".
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Creating Optional Clocks with the Clocks Pane of the HDL Cosimulation
Block

Note: For ModelSim and Incisive Users Only

When you specify a clock in your block definition, Simulink creates a rising-edge or
falling-edge clock that drives the specified HDL signal.

Simulink attempts to create a clock that has a 50% duty cycle and a predefined phase
that is inverted for the falling edge case. If applicable, Simulink degrades the duty cycle
to accommodate odd Simulink sample times, with a worst case duty cycle of 66% for a
sample time of T=3.

Whether you have configured the Timescales pane for relative timing mode or absolute
timing mode, the following restrictions apply to clock periods:

• If you specify an explicit clock period, you must enter a sample time equal to or
greater than 2 resolution units (ticks).
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• If the clock period (whether explicitly specified or defaulted) is not an even integer,
Simulink cannot create a 50% duty cycle, and therefore the HDL Verifier software
creates the falling edge at

clockperiod / 2

(rounded down to the nearest integer).

For more information on calculating relative and absolute timing modes, see “Defining
the Simulink and HDL Simulator Timing Relationship” on page 10-58.

The following figure shows a timing diagram that includes rising and falling edge clocks
with a Simulink sample time of T=10 and an HDL simulator resolution limit of 1 ns. The
figure also shows that given those timing parameters, the clock duty cycle is 50%.

1 ns

50% Duty Cycle

Rising Edge Clock

Simulink Sample Period, T=10

HDL Simulator Resolution Limit

t

Falling Edge Clock

To create clocks, perform the following steps:

1 In the HDL simulator, determine the clock signal path names you plan to define in
your block. To do so, you can use the same method explained for determining the
signal path names for ports in step 1 of “Map HDL Signals to Block Ports”.

2 Select the Clocks tab of the Block Parameters dialog box. Simulink displays the
dialog box as shown in the next figure (example shown for use with Incisive).
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3 Click New to add a new clock signal.
4 Edit the clock signal path name directly in the table under the Full HDL Name

column by double-clicking the default clock signal name (/top/clk). Then, specify
your new clock using HDL simulator path name syntax. See “Specify HDL Signal/
Port and Module Paths for Simulink Test Bench Cosimulation” on page 6-12.

The HDL simulator does not support vectored signals in the Clocks pane. Signals
must be logic types with 1 and 0 values.

5 To specify whether the clock generates a rising-edge or falling edge signal, select
Rising or Falling from the Active Clock Edge list.

6 The Period field specifies the clock period. Accept the default (2), or override it by
entering the desired clock period explicitly by double-clicking in the Period field.

Specify the Period field as an even integer, with a minimum value of 2.
7 When you have finished editing clock signals, click Apply to register your changes

with Simulink.
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The following dialog box defines the rising-edge clock clk for the HDL Cosimulation
block, with a default period of 2 (example shown for use with Incisive).

Driving Signals by Adding Force Commands

You can drive clocks, resets, and enable signals in either of two ways:

• By adding force commands to the Simulation pane (ModelSim and Incisive users
only)

• By driving signals with one of the HDL Verifier HDL simulator launch commands
(vsim or nclaunch) and the force command

Examples: force Command entered in HDL Cosimulation block Simulation Pane

The following is an example of entering force commands in the Simulation pane of the
HDL Cosimulation block for use with Incisive:
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The following is an example of entering force commands in the Simulation pane of the
HDL Cosimulation block for use with ModelSim:
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Examples: force Command used with HDL Verifier HDL Simulator Launch Command

vsim function and force command (ModelSim users):
vsim('tclstart', {'force /iqconv/clk 1 0, 0 5 ns -repeat 10 ns ', 

     'force /iqconv/clk_enable 1', 'force /iqconv/reset 1'});

nclaunch function and force command (Incisive users):
nclaunch('tclstart',['-input "{@force osc_top.clk_enable 1 -after 0ns}"',

         '-input "{@force osc_top.reset 0 -after 0ns 1 -after 40ns 0 -after 120ns}"',

         '-input "{@force osc_top.clk 1 -after 0ns 0 -after 40ns -repeat 80ns}"']);
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TCP/IP Socket Ports

When you specify a TCP/IP socket port, choose an available port or service name (alias).
If you are uncertain what port is available, use hdldaemon(‘socket’, 0) to get an
available port. If you choose a port that is already in use, you will get an error message.

When you set up communication between computers, you must specify the host name as
well as the port name on the client side.

Examples:

<port-num>                 4449

<port-alias>               matlabservice

<host>:<port-num>          compa:4449

<port-alias>@<host-ia>     matlabservice@123.34.55.23

Note that TCP/IP port filtering on either the client or server side can cause the HDL
Verifier interface to fail to make a connection. If you get an error, remove filtering (see
OS user guide), or try a different port.
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FPGA-in-the-Loop Simulation

In this section...

“What is FPGA-in-the-Loop Simulation?” on page 11-2
“What You Need To Know” on page 11-4

What is FPGA-in-the-Loop Simulation?

• “Overview” on page 11-2
• “Communication Channel” on page 11-4
• “Downstream Workflow Automation” on page 11-4

Overview

FPGA-in-the-loop (FIL) simulation provides the capability to use Simulink or MATLAB
software for testing designs in real hardware for any existing HDL code. The HDL code
can be either manually written or software generated from a model subsystem.

You must have HDL code to perform FIL simulation. There are two FIL workflows:

• You have existing HDL code (FIL wizard).

Note: The FIL wizard uses any synthesizable HDL code including code automatically
generated from Simulink models by HDL Coder software

• You have MATLAB code or a Simulink model and an HDL Coder license (HDL
workflow advisor).

Note: When you use FIL in the Workflow Advisor, HDL Coder uses the loaded design
to create the HDL code.

No matter which workflow you choose, FIL performs the following processes when it
creates the block or System object:

• Generates a FIL block or FIL System object that represents the HDL code
• Provides synthesis, logical mapping, place-and-route (PAR), programming file

generation, and communications channel.
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• Loads the design onto an FPGA

All these capabilities are designed for a particular board and tailored to your RTL code.

As part of FIL simulation, the block or System object and your model or application:

• Transmits data from Simulink or MATLAB to the FPGA
• Receives data from the FPGA
• Exercises the design in a real environment

FIL Communications

The following figure demonstrates how HDL Verifier communicates between Simulink
and the FPGA board using FIL simulation.

Note: HDL Verifier assumes that there is only one download cable connected to the
host computer, and that the FPGA programming software can automatically detect this
connection. If not, use FPGA programming software to program your FPGA with the
correct options.

11-3



11 About FPGA-in-the-Loop Simulation

System-Level View

All DUT I/Os are routed to Simulink through the FIL communication logic.

Communication Channel

FIL provides the communication channel for sending and receiving data between
Simulink and the FPGA. This channel can be a JTAG, Ethernet, or PCI Express®

connection. Communication between Simulink and the FPGA is strictly synchronized to
provide a reliable verification environment.

Downstream Workflow Automation

To create the FIL programming file, the software performs the following tasks:

• Generates HDL code for the specified DUT and creates an ISE project.
• Along with your FPGA design software, synthesizes, maps, places and routes, and

creates a programming file for the FPGA.
• Downloads the programming file to the FPGA on the development board through the

normal configuration connection. Typically, that connection is a serial line over a USB
cable (see the board user guide for how to make this connection).

• For FIL simulation blocks, clicking Load on the FIL block mask initiates the
programming file download.

• For FIL simulation System objects, issuing the programFPGA method initiates the
programming file download.

What You Need To Know

For FIL simulation, you must have the following items or information ready:
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• For FIL wizard:

• Provide HDL code (either manually written or software generated) for the design
you intend to test.

• Select HDL files and specify the top-level module name.
• Review port settings and make sure the FIL wizard identified input and output

signals and signal sizes as expected.
• If you are using Simulink, provide a Simulink model ready to receive the

generated FIL block.
• For HDL Workflow Advisor:

You can generate code and run FIL from any suitable Simulink model. Follow the
workflow for FPGA-in-the-Loop. See “FIL Simulation with HDL Workflow Advisor
for Simulink” on page 14-2. For MATLAB code, see the workflow described in
“FIL Simulation with HDL Workflow Advisor for MATLAB” on page 14-11.
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FPGA-in-the-Loop Simulation Workflows

You must have HDL code to perform FIL simulation. There are two FIL workflows:

• You have existing HDL code (FIL wizard).

Note: The FIL wizard uses any synthesizable HDL code including code automatically
generated from Simulink models by HDL Coder software

• You have MATLAB code or a Simulink model and an HDL Coder license (HDL
workflow advisor).

Note: When you use FIL in the Workflow Advisor, HDL Coder uses the loaded design
to create the HDL code.

For either workflow, the first three steps are the same:

1 “Download FPGA Board Support Package” on page 12-3 or create custom board
definition files for use with FIL (see “FPGA Board Customization” on page 17-2)

2 “Prepare DUT For FIL Interface Generation” on page 12-23
3 “Set Up FPGA Design Software Tools” on page 12-7

For the next step, click the link for the workflow you are going to follow:

• If you have existing HDL code, select block or System object generation using the FIL
wizard:

• “Block Generation with the FIL Wizard” on page 13-2
• “System Object Generation with the FIL Wizard” on page 13-17

• If you need the HDL workflow advisor to generate HDL code, select block or System
object generation using HDL workflow advisor:

• “FIL Simulation with HDL Workflow Advisor for Simulink” on page 14-2
• “FIL Simulation with HDL Workflow Advisor for MATLAB” on page 14-11

Note: To use the HDL Coder HDL workflow advisor for Simulink to generate a FIL
interface, you must have an HDL Coder license.
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Download FPGA Board Support Package

In this section...

“HDL Verifier Support Packages for FPGA Boards” on page 12-3
“Install with Connection to Internet” on page 12-4
“Install Support Package Offline” on page 12-5

HDL Verifier Support Packages for FPGA Boards

The FPGA board support packages contain the definition files for all the supported
boards for FPGA-in-the-loop (FIL) simulation. You can download any or all the FPGA
board support packages. Before you can use FIL, download at least one of the FPGA
board support packages or customize your own board definition file.

You can download FPGA board support packages from within the HDL workflow advisor,
or the FIL wizard, by clicking Launch Board Manager, and selecting Get More
Boards. Or, to customize a board definition file, see FPGA Board Manager on page
17-2. You can also install offline.

After you have downloaded an FPGA board support package, you can use “FPGA-in-the-
Loop Simulation” on page 11-2.
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Install with Connection to Internet
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After you have downloaded an FPGA board support package, you can use “FPGA-in-the-
Loop Simulation” on page 11-2.

Install Support Package Offline

To install the board support packages without an Internet connection, first download the
packages on a computer that does have an Internet connection.

1 On the computer with the Internet connection, start MATLAB.
2 Select Add-Ons > Get Hardware Support Packages.
3 Select Download from Internet.
4 Select the board support package you want to download. Click Next and follow the

installer prompts. The last screen displays where you can find the downloaded file.
5 Copy the downloaded file to a shared network drive or removable media, such as a

USB drive.

Then, on the computer where you want to install the board support packages:
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1 Copy the downloaded file to the host computer.
2 Start MATLAB.
3 Select Add-Ons > Get Hardware Support Packages.
4 Select Install from folder.
5 Specify the path to the folder where the downloaded files are located.
6 Click Next, and follow the installer prompts to install the board support package.

If you do actually have an Internet connection, you are prompted to log in to your
MathWorks® account.
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Set Up FPGA Design Software Tools

In this section...

“Xilinx Software” on page 12-7
“Altera Software” on page 12-7

Xilinx Software

Set up your system environment for accessing Xilinx tools from MATLAB with the
function hdlsetuptoolpath. This function adds the specified installation folder to the
MATLAB search path.

• Windows with ISE —
hdlsetuptoolpath...

   ('ToolName','Xilinx ISE','ToolPath','C:\Xilinx\14.2\ISE_DS\ISE\bin\nt64')

This example assumes that the Xilinx ISE design suite is installed at C:\Xilinx
\14.2\ISE_DS\ISE\bin\nt64.

• Linux with Vivado® —
hdlsetuptoolpath...

   ('ToolName','Xilinx Vivado','ToolPath','local/Xilinx/Vivado/bin')

This example assumes that the Xilinx Vivado software is installed at local/Xilinx/
Vivado/bin.

Altera Software

Set up your system environment for accessing from MATLAB with the function
hdlsetuptoolpath. This function adds the specified installation folder to the MATLAB
search path. For example:
hdlsetuptoolpath...

   ('ToolName','Altera Quartus II','ToolPath','C:\Altera\12.0\quartus\bin64')

This example assumes that the Altera FPGA design software is installed at C:\Altera
\12.0\quartus\bin64.
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Guided Hardware Setup

In this section...

“Select Board and Interface for Use with FPGA-in-the-Loop” on page 12-8
“Connection Requirements” on page 12-8
“Connection Setup” on page 12-9
“Configure Network Card on Host” on page 12-13
“PCIe Driver Installation” on page 12-14
“Verify Setup” on page 12-14
“Open the Example” on page 12-14

Select Board and Interface for Use with FPGA-in-the-Loop

The guided hardware setup for FPGA boards helps you get started with FPGA-in-the-
Loop (FIL) more quickly. Before you run the guided setup, make sure you have all the
required hardware ready and any required third-party tools already installed.

The guided setup starts automatically during support package download and
installation. After the support package you selected is installed, you are prompted to
select your board name and the interface you want to use with this board. You can
select only interfaces supported by the FPGA board. A PCIe connection with FIL is not
supported on Linux.

Note: To rerun the support package setup at any time:

• On the MATLAB Home tab, in the Environment section, click Add-Ons > Check
for Updates > Hardware Support Packages.

Connection Requirements

Note: Do not connect or turn on the FPGA development board until you are prompted at
a later step.
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Ethernet

• FPGA development board
• USB-JTAG cable with installed vendor software (Vivado or Quartus®)
• Ethernet cable
• Dedicated Gigabit network interface card (NIC) or a USB 3.0 Gigabit Ethernet

adapter dongle
• Power supply adapter (if the board requires one)

JTAG

• FPGA development board
• USB-JTAG cable with installed vendor software (Vivado or Quartus)
• Power supply adapter (if the board requires one)

PCIe

HDL Verifier supports a PCIe connection for FIL with Windows 7 and Windows 8
operating systems only.

• FPGA development board
• USB-JTAG cable with installed vendor software (Vivado or Quartus)
• A PCIe slot and available space on the motherboard
• Power supply adapter (if the board requires one)

Connection Setup

Ethernet

1 Make sure that the board power switch is off during these setup steps. You are
prompted to turn the power on at a later step.

2 Connect the AC power cord to the power plug, and plug the power supply adapter
cable into the FPGA development board.

3 Use the crossover Ethernet cable to connect the Ethernet connector on the FPGA
development board directly to the Ethernet adapter on your computer.

4 Use the JTAG download cable to connect the FPGA development board to the
computer.

5 Make sure that all the jumpers on the FPGA development board are in the factory
default position.
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6 Turn on the power switch on the FPGA board.

JTAG

1 Make sure that the board power switch is off during these setup steps. You are
prompted to turn the power on at a later step.

2 Connect the AC power cord to the power plug, and plug the power supply adapter
cable into the FPGA development board.

3 Use the JTAG download cable to connect the FPGA development board to the
computer.

4 Make sure that all the jumpers on the FPGA development board are in the factory
default position.

5 Turn on the power switch on the FPGA board.

PCIe

1 Make sure that the board power switch is off during these setup steps. You are
prompted to turn the power on at a later step.

2 Select the maximum number of PCIe lanes supported by the board. For details, refer
to the user manual for the board.

Supported Board PCIe Setup Documentation

DSP Development Kit,
Stratix® V Edition

Set the three switches
(PCIE_PRSNT2nx1, x4,
x8) in dip switch SW6 to
ON. This setting selects 8-
lane PCIe (default board
setting).

https://www.altera.com/
products/boards_and_kits/
dev-kits/altera/kit-stratix-v-
dsp.html

Cyclone® V GT FPGA
Development Kit

Set the two
switches(PCIe_x1, x4) in
dip switch SW3 to ON.
This setting selects 4-
lane PCIe (default board
setting).

https://www.altera.com/
products/boards_and_kits/
dev-kits/altera/kit-cyclone-
v-gt.html

Kintex®-7 KC705 Set jumper J32 so that it
connects pins 5 and 6. This
setting selects 8-lane PCIe
(default board setting).

http://www.xilinx.com/
products/boards-and-kits/
ek-k7-kc705-g.html
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 Guided Hardware Setup

Supported Board PCIe Setup Documentation

Virtex®-7 VC707 Set jumper J49 so that it
connects pins 5 and 6. This
setting selects 8-lane PCIe
(not the default board
setting).

http://www.xilinx.com/
products/boards-and-kits/
ek-v7-vc707-g.html

3 Turn off the host computer.
4 Install the FPGA development board in a PCIe slot inside the host computer.

•

Stratix V Board Installed

This installation also applies to all supported Altera VC boards.
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•

VC707 Board Installed

Note power cable on right. This installation also applies to all supported Xilinx
boards.

5 For Xilinx boards, plug the external power supply into the wall outlet. Then plug the
power supply adapter cable into the FPGA development board.

Altera boards do not use an external power supply.
6 Connect the JTAG cable to the FPGA development board and the computer. When

you use PCIe for FIL simulation, the JTAG cable is still required to program the
FPGA.

12-12



 Guided Hardware Setup

7 Turn on the power switch on the FPGA board.
8 Start up the host computer.

Configure Network Card on Host

This step is required only when you use FIL over Ethernet.

If you have already configured the network card, you can skip this step.

Specify the NIC on the host computer that you want to use with the development board
and FIL. If you have only one NIC, you must disconnect from the Internet while using
the NIC for FIL. In this case, consider using a USB 3.0 Gigabit Ethernet adapter dongle.
If you add a NIC or a USB 3.0 Gigabit Ethernet adapter dongle during this setup step,
click Refresh to see the new hardware in the list.

Leave the IP address for the NIC as the default, or specify the IP address in dotted quad
format, for example, 192.168.0.1.
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PCIe Driver Installation

This step is required only when you use FIL over PCIe.

If you have already installed the PCIe drivers, you can skip this step.

Install the PCIe drivers before you use FIL with a PCIe connection. This step performs
the driver installation for you. The process can take 10 or more minutes to install, and
might require system administrator privileges.

You can let the support package setup install the drivers now, or you can choose to re-run
the setup later. To run the support package setup at any time :

• On the MATLAB Home tab, in the Environment section, click Add-Ons > Check
for Updates > Hardware Support Packages.

Verify Setup

You can verify the hardware setup for Ethernet and JTAG connections. This step runs an
FPGA-in-the-loop test, which generates an FPGA programming file for your board. You
can also specify that this step include the FPGA board in the test, which means the step
actually performs a FIL cosimulation with your board.

1 Make sure that you have installed the appropriate vendor tool and that the tool is on
the MATLAB path. See “Set Up FPGA Design Software Tools” on page 12-7.

2 Select Run FPGA-in-the-Loop test. If you want to include the FPGA board in the
test, select Include FPGA board in the test.

3 Click Run Selected Tests.

You can rerun the tests as many times as you like. When the tests have been completed
to your satisfaction, you can continue with the setup.

Open the Example

When the installer completes your hardware setup, you can either exit the installer
or open the Verify HDL Implementation of PID Controller Using FPGA-in-the-Loop
example to get started.

More About
• “FPGA-in-the-Loop Simulation” on page 11-2

12-14



 Manual Hardware Setup

Manual Hardware Setup

FIL supports Ethernet, JTAG, and PCI Express connections. Some FPGA boards support
multiple connection methods, and some boards support only one method. Choose setup
instructions based on the connection method you plan to use for FIL simulation.

When possible, use the guided setup. To run the support package setup, or modify your
installation:

• On the MATLAB Home tab, in the Environment section, click Add-Ons > Check
for Updates > Hardware Support Packages.

For more about the guided setup, see “Guided Hardware Setup” on page 12-8.

Step 1. Set Up FPGA Development Board

JTAG or Ethernet Connection

1 Make sure that the board power switch is OFF during these setup steps.
2 Make sure that all jumpers on the FPGA development board are in the factory

default position.
3 Connect the AC power cord to the power plug.
4 Plug the power supply adapter cable into the FPGA development board.
5 Connect the JTAG cable to the FPGA development board and the computer. When

you use Ethernet for FIL simulation, the JTAG cable is still required to program the
FPGA.

6 If you plan to use an Ethernet connection for FIL simulation, connect the crossover
Ethernet cable between the FPGA development board and the Ethernet adapter on
your computer.

7 Turn on the power switch on the FPGA board.

PCI Express Connection

1 Make sure that the board power switch is OFF during these setup steps.
2 Select the maximum number of PCIe lanes supported by the board. to Refer to the

user manual for the board for details.
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Supported Board PCIe Setup Documentation

DSP Development Kit,
Stratix V Edition

Set the three switches
(PCIE_PRSNT2nx1, x4,
x8) in dip switch SW6 to
ON. This setting selects 8-
lane PCIe (default board
setting).

https://www.altera.com/
products/boards_and_kits/
dev-kits/altera/kit-stratix-v-
dsp.html

Cyclone V GT FPGA
Development Kit

Set the two
switches(PCIe_x1, x4) in
dip switch SW3 to ON.
This setting selects 4-
lane PCIe (default board
setting).

https://www.altera.com/
products/boards_and_kits/
dev-kits/altera/kit-cyclone-
v-gt.html

Kintex-7 KC705 Set jumper J32 so that it
connects pins 5 and 6. This
setting selects 8-lane PCIe
(default board setting).

http://www.xilinx.com/
products/boards-and-kits/
ek-k7-kc705-g.html

Virtex-7 VC707 Set jumper J49 so that it
connects pins 5 and 6. This
setting selects 8-lane PCIe
(not the default board
setting).

http://www.xilinx.com/
products/boards-and-kits/
ek-v7-vc707-g.html

3 Turn off the host computer.
4 Install the FPGA development board in a PCIe slot inside host computer.
5 For Xilinx boards, plug the external power supply into the wall outlet. Then plug the

power supply adapter cable into the FPGA development board.

Altera boards do not use an external power supply.
6 Connect the JTAG cable to the FPGA development board and the computer. When

you use PCIe for FIL simulation, the JTAG cable is still required to program the
FPGA.

7 Turn on the power switch on the FPGA board.
8 Start up the host computer.
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Step 2. Set Up Board Connection

HDL Verifier assumes that there is only one download cable connected to the host
computer, and that the FPGA programming software can automatically detect this
connection. If not, use FPGA programming software to program your FPGA with the
correct options.

• “JTAG Connection” on page 12-17
• “Ethernet Connection” on page 12-17
• “PCI Express Connection” on page 12-21

JTAG Connection

Altera

1 Install USB Blaster I or II cable driver.
2 When using Linux operating systems: The Quartus II library must be present in

LD_LIBRARY_PATH before you start MATLAB. Prepend the Linux distribution
library path before the Quartus II library on LD_LIBRARY_PATH. For example, /
lib/x86_64-linux-gnu:$QUARTUS_LATEST/../linux64.

Xilinx

1 For Linux operating systems: Install Digilent® Adept2.

Ethernet Connection

Follow these instructions to set up a Gigabit Ethernet network adapter on your computer
for FIL simulation.

Windows 7 Setup

1 Open the Control Panel and type "view network connections" in the search bar.
Select View network connections in the search results.

2 Right-click the connection icon to your FPGA development board, and select
Properties from the pop-up menu.
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3 Under This connection uses the following items, select Internet Protocol
Version 4 (TCP/IPv4), and click Properties.
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4 Select Use the following IP address and set IP address to 192.168.0.1. If this
address is in use by another computer on your network, change it to any available
IP address on this subnet, such as 192.168.0.100. This value indicates your host
computer address. Set the Subnet mask to 255.255.255.0.

The figure shows an example TCP/IP configuration.
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5 Click OK to exit TCP/IP Properties.
6 Click Close to exit Local Area Connection Properties.

Windows Vista Setup

1 Open the Control Panel.
2 Click Network and Sharing Center, and then click Manage network connections.
3 Right-click the connection icon to your FPGA development board, and select

Properties from the pop-up menu.
4 Under This connection uses the following items, select Internet Protocol

Version 4 (TCP/IPv4), and click Properties.
5 Select Use the following IP address and set IP address to 192.168.0.1. If this

address is in use by another computer on your network, change it to any available
IP address on this subnet, such as 192.168.0.100. This value indicates your host
computer address. Set the Subnet mask to 255.255.255.0.
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6 Click OK to exit TCP/IP Properties.
7 Click Close to exit Local Area Connection Properties.

Windows XP Setup

1 Open the Control Panel.
2 Open Network connections.
3 Right-click the connection icon to your FPGA development board, and select

Properties from the pop-up menu.
4 Under This connection uses the following items, select Internet Protocol

(TCP/IP), and click Properties.
5 Select Use the following IP address and set IP address to 192.168.0.1. If this

address is in use by another computer on your network, change it to any available
IP address on this subnet, such as 192.168.0.100. This value indicates your host
computer address. Set the Subnet mask to 255.255.255.0.

6 Click OK to exit TCP/IP Properties.
7 Click Close to exit Local Area Connection Properties.

Linux Setup

Use the ifconfig command to set up your local address. For example:

% ifconfig eth1 192.168.0.1

In this example, eth1 is the second Ethernet adapter on the Linux computer. Check
your system to determine which Ethernet adapter is connected to the FPGA development
board. This command sets the local IP address to 192.168.0.1. If this address is in use by
another computer on your network, change it to any available IP address on this subnet,
such as 192.168.0.100.

PCI Express Connection

FIL over PCI Express connection is supported only for 64-bit Windows operating
systems.

1 Install the PCI Express drivers for your board using the FPGA board support
package installer.

2 After you program your FPGA development board, restart your computer. The
operating system automatically detects the new PCIe connection. See “Step 9:
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Integrated and Simulate” > “Load Programming File onto FPGA” > “PCI Express
Connection” under “Block Generation with the FIL Wizard” on page 13-2 or
“System Object Generation with the FIL Wizard” on page 13-17.
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Prepare DUT For FIL Interface Generation

In this section...

“Files and Information Required for FIL Generation” on page 12-23
“Apply FIL System Object Requirements” on page 12-24
“Apply FIL Block Requirements” on page 12-27

Files and Information Required for FIL Generation

• “For FIL Wizard” on page 12-23
• “For HDL Workflow Advisor” on page 12-23

For FIL Wizard

Have the following items or information ready:

• Provide HDL code (either manually written or software generated) for the design you
intend to test.

• Select HDL files and specify the top-level module name.
• Review port settings and make sure the FIL wizard identified input and output

signals and signal sizes as expected.
• If you are using Simulink, provide a Simulink model ready to receive the generated

FIL block.

Next Steps

• If you are creating a FIL System object, next go to “Apply FIL System Object
Requirements” on page 12-24.

• If you are creating a FIL block, next go to “Apply FIL Block Requirements” on page
12-27.

For HDL Workflow Advisor

You can generate code and run FIL from any suitable Simulink model.

Next Steps

• If you are creating a FIL System object, next go to “Apply FIL System Object
Requirements” on page 12-24.
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• If you are creating a FIL block, next go to “Apply FIL Block Requirements” on page
12-27.

Apply FIL System Object Requirements

• “The FIL Process for System Objects” on page 12-24
• “HDL Code Considerations for FIL System Objects” on page 12-25
• “FIL-Specific Rules for System Objects” on page 12-27
• “MATLAB Code Considerations for FIL System Objects” on page 12-27

The FIL Process for System Objects

The FIL wizard and HDL Coder HDL Workflow Advisor each perform the following
actions:

• Convert HDL code into System object inputs and outputs.
• Walk you through identifying: FPGA device, source files, I/O ports, and port info.
• Add logic to the device under test (DUT) to communicate with MATLAB.

Generally, this logic is small and has minimal impact on the fit of your design onto
the FPGA.

• Create the programming file and a FIL System object.

Note: If a design does not fit in the device or does not meet timing goals, the software
may not create a programming file. In this situation, you may see a warning that the
design does not meet the timing goals, but it still generates a programming file, or you
may get an error and no programming file. Either change your design, or use a different
development board.

When FIL interface generation is complete, you can use the method programFPGA to
load the programming file to the FPGA board. You can also use this method to adjust
runtime options and signal attributes.

When you are ready to begin, read through the following topics and make sure that your
DUT adheres to the rules and guidelines described in each section:

• “HDL Code Considerations for FIL System Objects” on page 12-25
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• “FIL-Specific Rules for System Objects” on page 12-27
• “MATLAB Code Considerations for FIL System Objects” on page 12-27

When you are finished with these sections, next go to either “System Object Generation
with the FIL Wizard” on page 13-17 or “FIL Simulation with HDL Workflow Advisor
for MATLAB” on page 14-11.

HDL Code Considerations for FIL System Objects

Follow these rules when using legacy or auto-generated HDL code for generating a FIL
System object.

Category Considerations

HDL files All HDL names must be legal as defined in the VHDL 1993
standard.

Top-level design • The top-level design must be VHDL or Verilog.
• The top-level HDL file must contain an entity/module with the

same name as the file name.
• FIL block generation supports both combinatorial and

sequential logic. For combinatorial logic, CLK, CLK_ENABLE,
and RESET are not required.

Inputs and outputs • Input and output ports must be of the following types:

• std_logic (VHDL)
• std_logic_vector (VHDL)
• Reg, wire (Verilog)

• Vector ports range must be:

• Descending (e.g. 9 DOWNTO 0, 9:0)
• Literal. Use of generics (VHDL) or parameters (Verilog) is

not supported. (e.g. a DOWNTO b or a:b is not supported)

Descending TO syntax is not supported
• For Verilog, ports names must be lowercase. Module name

must be lowercase, also.
• All input and output ports must be included.
• There must be at least one output port.
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Category Considerations

Clock • Sequential HDL design must have only one clock at the top
entity. Clock and reset are required. For combinatorial HDL
design, the clock bundle is not required.

• Name your clock signal clock or clk. If the clock is not named
clock or clk, designate which signal is the clock signal in the
FIL wizard.

• Clock port must be 1-bit. For VHDL, it must be of type
std_logic.

Reset • The HDL design must have a reset to be able to reset the FPGA
before simulation.

• For sequential design, there must be only one reset. Clock and
reset are required. For combinatorial HDL design, the clock
bundle is not required.

• Name your reset signal reset or rst. If the reset is not named
reset or rst, designate which signal is the reset signal in the
FIL wizard.

• Reset port must be 1-bit. For VHDL, these ports must be of
type std_logic.

Clock enable • For sequential design, if you choose a clock enable, there must
be only one.

• Clock enable port must be 1-bit. For VHDL, these ports must be
of type std_logic.

• If you have a clock enable, name it one of the following:
clock_enable, clock_enb, clock_en, clk_enable,
clk_enb, clk_en, ce. If the clock enable is not named one of
these names, designate which signal is the clock enable signal
in the FIL wizard.

DUT entity All the ports at DUT level must specify a bit width. Using a
variable as the bit width is not allowed.

Clock edge Clock the DUT input and output ports by positive edge. Negative
edge is not allowed.

Non-supported data
types

• Bidirectional ports
• Arrays, record types
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Category Considerations

Non-supported
constructs

• VHDL configuration statement
• Verilog include files
• Macros
• Escaped names
• Duplicated port names (Verilog)

FIL-Specific Rules for System Objects

FIL input and
output data set
limits

• Total input data size must be less than 1467 bytes. The input
data size is the sum of the input bits rounded up to the nearest
byte.

• Output data size must also be less than 1467 bytes. The output
data size is the sum of the output bits rounded up to the
nearest byte.

Output frame size Output frame size = Input frame size × OverclockingFactor /
OutputDownsample

MATLAB Code Considerations for FIL System Objects

MATLAB
compatibilities

HDL Verifier FIL simulation supports only the following data
types:

• Integer
• Logical
• Fixed point

Apply FIL Block Requirements

• “The FIL Process for Blocks” on page 12-28
• “HDL Code Considerations for FIL Blocks” on page 12-28
• “Simulink Model Considerations for FIL Blocks” on page 12-31
• “FIL-Specific Rules for Blocks” on page 12-31
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The FIL Process for Blocks

The FIL wizard and HDL Coder HDL Workflow Advisor each perform the following
actions:

• Convert HDL code into block signals with timing applied.
• Walk you through identifying: FPGA device, source files, I/O ports, and port info.
• Add logic to the device under test (DUT) to communicate with Simulink.

Generally, this logic is small and has minimal impact on the fit of your design onto
the FPGA.

• Create the programming file and a FIL simulation block.

Note: If a design does not fit in the device or does not meet timing goals, the software
may not create a programming file. In this situation, you may see a warning that the
design does not meet the timing goals, but it still generates a programming file, or you
may get an error and no programming file. Either change your design, or use a different
development board.

After FIL interface generation is complete, use the FIL block mask to load the
programming file to the FPGA board. You can also adjust runtime options and signal
attributes.

When you are ready to begin, read through the following topics and make sure that your
DUT adheres to the rules and guidelines described in each section:

• “HDL Code Considerations for FIL Blocks” on page 12-28
• “Simulink Model Considerations for FIL Blocks” on page 12-31
• “FIL-Specific Rules for Blocks” on page 12-31

When you are finished with these sections, next go to “Block Generation with the FIL
Wizard” on page 13-2 or “FIL Simulation with HDL Workflow Advisor for Simulink”
on page 14-2.

HDL Code Considerations for FIL Blocks

Follow these rules when using legacy or auto-generated HDL code for generating a FIL
block.
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Category Considerations

HDL files All HDL names must be legal as defined in the VHDL 1993
standard.

Top-level design • The top-level design must be VHDL or Verilog.
• The top-level HDL file must contain an entity/module with the

same name as the file name.
• FIL block generation supports both combinatorial and

sequential logic. For combinatorial logic, CLK, CLK_ENABLE,
and RESET are not required.

Inputs and outputs • Input and output ports must be of the following types:

• std_logic (VHDL)
• std_logic_vector (VHDL)
• Reg, wire (Verilog)

• Vector ports range must be:

• Descending (e.g. 9 DOWNTO 0, 9:0)
• Literal. Use of generics (VHDL) or parameters (Verilog) is

not supported. (e.g. a DOWNTO b or a:b is not supported)

Descending TO syntax is not supported
• For Verilog, ports names must be lowercase. Module name

must be lowercase, also.
• All input and output ports must be included.
• There must be at least one output port.

Clock • Sequential HDL design must have only one clock at the top
entity. Clock and reset are required. For combinatorial HDL
design, the clock bundle is not required.

• Name your clock signal clock or clk. If the clock is not named
clock or clk, designate which signal is the clock signal in the
FIL wizard.

• Clock port must be 1-bit. For VHDL, it must be of type
std_logic.
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Category Considerations

Reset • The HDL design must have a reset to be able to reset the FPGA
before simulation.

• For sequential design, there must be only one reset. Clock and
reset are required. For combinatorial HDL design, the clock
bundle is not required.

• Name your reset signal reset or rst. If the reset is not named
reset or rst, designate which signal is the reset signal in the
FIL wizard.

• Reset port must be 1-bit. For VHDL, these ports must be of
type std_logic.

Clock enable • For sequential design, if you choose a clock enable, there must
be only one.

• Clock enable port must be 1-bit. For VHDL, these ports must be
of type std_logic.

• If you have a clock enable, name it one of the following:
clock_enable, clock_enb, clock_en, clk_enable,
clk_enb, clk_en, ce. If the clock enable is not named one of
these names, designate which signal is the clock enable signal
in the FIL wizard.

DUT entity All the ports at DUT level must specify a bit width. Using a
variable as the bit width is not allowed.

Clock edge Clock the DUT input and output ports by positive edge. Negative
edge is not allowed.

Non-supported data
types

• Bidirectional ports
• Arrays, record types

Non-supported
constructs

• VHDL configuration statement
• Verilog include files
• Macros
• Escaped names
• Duplicated port names (Verilog)
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Simulink Model Considerations for FIL Blocks

Follow these rules for integrating the FIL block into your Simulink model.

Category Considerations

General model rules • Use Single tasking solver mode (set with Configuration
Parameters). HDL Verifier FIL does not support multitasking
solver mode.

• Choose discrete, fixed-step solvers or variable-step solvers.
HDL Verifier FIL supports both types of solvers.

Incompatibilities
with Simulink

HDL Verifier FIL simulation currently does not support the
following:

• Instantiation of the FIL block in a triggered subsystem
• Instantiation of the FIL block in an asynchronous function-call

subsystem
• A continuous sample time
• A nonzero sample time offset

Initialization RAM Initialization: Simulink starts from time 0 every time, which
means the RAM in a Simulink model is initialized to zero for each
run. However, this assumption is not true in hardware. RAM
in the FPGA holds its value from the end of one simulation to
the start of the next. If you have RAM in your design, the first
simulation matches Simulink, but subsequent runs may not
match. The workaround is to reload the FPGA bitstream before
rerunning the simulation. To reload the bitstream, click the Load
on the FIL block mask.

FIL-Specific Rules for Blocks

FIL block settings
rules

• The input frame size must be an integer multiple of the output
frame size.

• All signals must be of the same bit-width as their
corresponding port in the hardware.

• In frame mode, all inputs must have the same frame size
and all outputs must have the same frame size (but possibly
different from the inputs).
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• When processing as frames, all input signals must have the
same sample times and all output signals must have the same
sample times. The output sample time can be different from the
input sample time.

• When processing as samples, only scalars are supported.
When processing as frames, only column vectors (N-by-1) are
supported.

• Supported data types are built-in data types and fixed-point
data types.

• Split complex signals into real and imaginary signals. FIL
simulation does not support complex signals.

• The output frame size must be less than the input frame size.
This requirement ensures that the output frame has enough
data to drive a value at time 0. You can avoid this error by
either decreasing the output frame size or sample time, or
increasing the input frame size or sample time.

FIL byte size limit • Total input data size must be less than 1467 bytes. The input
data size is the sum of the input bits rounded up to the nearest
byte.

• Output data size must also be less than 1467 bytes. The output
data size is the sum of the output bits rounded up to the
nearest byte.

12-32



13

FIL Interface Generation and
Simulation
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Block Generation with the FIL Wizard

In this section...

“Step 1: Set Up FPGA Design Software Tools” on page 13-2
“Step 2: Start FIL Wizard” on page 13-3
“Step 3: Set FIL Options for FIL Block” on page 13-4
“Step 4: Add HDL Source Files for FIL Block” on page 13-6
“Step 5: Verify DUT I/O Ports for FIL Block” on page 13-8
“Step 6: Specify Output Types for FIL Block” on page 13-9
“Step 7: Specify Build Options for FIL Block” on page 13-10
“Step 8: Initiate Build” on page 13-11
“Step 9: Integrate and Simulate” on page 13-11

Step 1: Set Up FPGA Design Software Tools

Xilinx Software

Set up your system environment for accessing Xilinx tools from MATLAB with the
function hdlsetuptoolpath. This function adds the specified installation folder to the
MATLAB search path.

• Xilinx ISE —
hdlsetuptoolpath('ToolName','Xilinx ISE','ToolPath','C:\Xilinx\14.2\ISE_DS\ISE\bin\nt64')

This example assumes that the Xilinx ISE design suite is installed at C:\Xilinx
\14.2\ISE_DS\ISE\bin\nt64.

• Xilinx Vivado —
hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath','C:\apps\Vivado\2013.4-mw-0\Win\bin\vivado')

This example assumes that Xilinx Vivado is installed at C:\apps\Vivado\2013.4-
mw-0\Win\bin\vivado.

Altera Software

Set up your system environment for accessing Altera tools from MATLAB with the
function hdlsetuptoolpath. This function adds the specified installation folder to the
MATLAB search path. For example:
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hdlsetuptoolpath('ToolName','Altera Quartus II','ToolPath','C:\Altera\12.0\quartus\bin64')

This example assumes that the Altera FPGA design software is installed at C:\Altera
\12.0\quartus\bin64.

Step 2: Start FIL Wizard

Open the FPGA-in-the-loop wizard by selecting one of the following invocation methods:

• In the MATLAB command window, type the following:

>> filWizard

• In the Simulink model window, select Code > Verification Wizards > FPGA-in-
the-Loop (FIL).

To restore a previous session, use this command:

filWizard('./Subsystem_fil/Subsystem_fil.mat')
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Step 3: Set FIL Options for FIL Block

In the FIL Options page:

1 FIL Simulation: Select Simulink.
2 Board Name: Select an FPGA development board. If you have not yet downloaded

an HDL Verifier FPGA board support package, see “Download FPGA Board Support
Package” on page 12-3. (If you do not see any boards listed, then you have not yet
downloaded a support package). If you plan to define a custom board yourself, see
“FPGA Board Customization” on page 17-2.

3 FPGA-in-the-Loop Connection: FIL simulation connection method. The options
in the drop-down menu update depending on the connection methods supported
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for the target board you selected. If the target board and HDL Verifier support the
connection, you can choose Ethernet, JTAG, or PCI Express.

4 Advanced Options:

When you select an Ethernet connection, you can adjust the board IP and MAC
addresses, if necessary.

Option Instructions

Board IP address Use this option for setting the IP address of the board if it
is not the default IP address (192.168.0.2).

If the default board IP address (192.168.0.2) is in use by
another device, or you need a different subnet, change the
Board IP address according to the following guidelines:

• The subnet address, typically the first three bytes of
board IP address, must be the same as the subnet of
the host IP address.

• The last byte of the board IP address must be different
from the last byte of the host IP address.

• The board IP address must not conflict with the IP
addresses of other computers.

For example, if the host IP address is 192.168.8.2, then
you can use 192.168.8.3, if available.

Board MAC address Under most circumstances, you do not need to change the
board MAC address. If you connect more than one FPGA
development board to a single host computer, change the
board MAC address for any additional boards so that each
address is unique. You must have a separate NIC for each
board.

To change the Board MAC address, click in the  Board
MAC address field. Specify an address that is different
from that belonging to any other device attached to your
computer. To obtain the Board MAC address for a specific
FPGA development board, refer to the label affixed to the
board or consult the product documentation.
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FPGA system clock frequency (MHz): Enter a target clock frequency. For Altera
boards and Xilinx ISE-supported boards, filWizard checks the requested frequency
against those possible for the requested board. If the requested frequency is not
possible for this board, filWizard returns an error and suggests an alternate
frequency. For Xilinx Vivado-supported boards, or PCI Express boards, filWizard
cannot check the frequency. The synthesis tools make a best effort attempt at the
requested frequency but may choose an alternate frequency if the specified frequency
was not achievable. The default is 25 MHz.

5 Click Next.

Step 4: Add HDL Source Files for FIL Block
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In the Source Files page:

1 Specify the HDL design to be cosimulated in the FPGA. These files are the HDL
design files to be verified on the FPGA board.

Indicate source files by clicking Add. Select files using the file selection dialog box.

The FIL wizard attempts to identify the source file types. If any of the file types is
not what you expect, you can change it by selecting from the File Type drop-down
list. Acceptable file types are:

• VHDL
• Verilog
• Netlist
• Tcl script
• Constraints
• Others

"Others" refers to the following:

• For Altera, files specified as Other are added to the FPGA project, but they
have no impact on the generated block. For example, you can put some
comments in a “readme” file and include it in this file list.

• For Xilinx, files specified as Other can be any file accepted by Xilinx ISE. ISE
looks at the file extension to determine how to use this file. For example, if you
add foo.vhd to the list and specify it as Other, ISE treats the file as a VHDL
file.

2 Specify which file contains the top-level HDL file.

Check the box on the row of the HDL file that contains the top-level HDL module
in the column titled Top-level. The FIL wizard automatically fills the Top-level
module name field with the name of the selected HDL file. If the top-level module
name and file name do not match, you can manually change the top-level module
name in this dialog box. Indicate the top-level module name before you continue.

3 (Optional) To display the full paths to the source files, check the box titled Show full
paths to source files.

4 Click Next.
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Step 5: Verify DUT I/O Ports for FIL Block

In the DUT I/O Ports page:

1 Review the port listing. The FIL wizard parses the top-level HDL module to obtain
all the I/O ports and display them in the DUT I/O Ports table. The parser attempts
to determine the port types from the port names. The wizard then displays these
signals under Port Type.

Make sure all input/output/reset ports/clocks are mapped as you expect. If the parser
assigned an incorrect port type for any port, you can manually change the signal. For
synchronous design, specify a Clock, Reset, or, if desired, a Clock enable signal. The
port types specified in this table must be the same as in the HDL code. There must
be at least one output port.
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Select Manually enter port information to add or remove signals.

Click Regenerate to reload the table with the original port definitions (from the
HDL code).

2 Click Next.

Step 6: Specify Output Types for FIL Block

In the Output Types page:

1 Specify output data types. The wizard assigns data types. If any output data type is
not what you expect, manually change the type.

Select from:
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• Fixedpoint

• Integer

• Logical

The data type can depend on the specified bit width.

You can specify the output type to be Signed, Unsigned, or Fraction Length.
2 Click Next.

Step 7: Specify Build Options for FIL Block

In the Build Options page:
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• Specify the folder for the output files. You can use the default option. Usually the
default is a subfolder named after the top-level module, located under the current
folder.

• The Summary displays the locations of the ISE project file and the FPGA
programming file. You may need those two files for advanced operations on the FIL
block mask.

Step 8: Initiate Build

Click Build to initiate FIL block generation.

1 The FIL wizard generates a FIL block named after the top-level module and places it
in a new model.

2 The FIL wizard opens a command window.

• In this window, the FPGA design software performs synthesis, fit, PAR, and
FPGA programming file generation.

• When the process completes, a message in the command window prompts you to
close the window.

Step 9: Integrate and Simulate

Insert FIL Block Into Model

In your model, replace the DUT subsystem with the FIL block generated in the new
model. Save the model under a different name. You can then use the original model as a
reference model.

If you generated your FIL block from the HDL workflow advisor, it is unlikely that you
need to adjust any settings on the FIL block. If you generated your FIL block using the
FIL wizard, you may want to adjust some settings. For instructions on adjusting the FIL
block settings, see FIL Simulation.
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Load Programming File onto FPGA

Altera Board Instructions for Linux

On Linux hosts, you often must be a superuser to program the bit file onto Altera boards.
This requirement can restrict testing on these boards. However, there is a way to work
around the superuser requirement.

Fix the device permission issue for Altera bitstream programming under Debian® 5
by creating or modifying a rules file. This solution is a one time file modification that
requires SUPERUSER privileges.

• Option 1: Create a rules file (e.g., 92-altera.rules) under /etc/udev/rules.d/
with the following contents:

# Altera USB-Blaster

ATTRS{idVendor}=="09fb", ATTRS{idProduct}=="6001", GROUP="users"

• Option 2: Add the following lines to an existing rule file under /etc/udev/rules.d/

# Altera USB-Blaster 

ATTRS{idVendor}=="09fb", ATTRS{idProduct}=="6001", GROUP="users" 

Ensure that your FPGA development board is set up, turned on, and connected to your
machine using a JTAG cable. Programming uses the JTAG interface, even if you select a
different connection for simulation.

Perform the following steps to program the FPGA:

1 Double-click the FIL block in your Simulink model to open the block mask.
2 On the Main tab, click Load to download the programming file to the FPGA via the

JTAG cable.

The load process can take from a few minutes to several minutes or longer,
depending on how large the subsystem is. Sometimes, the process can take an hour
and a half or longer for large subsystems.
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3 A message window indicates when the FPGA programming file has loaded as
expected. Click OK.

Ethernet Connection

If you are using an Ethernet connection, you can test if the FPGA board is connected
to your host computer through the ping test. Open a command-line window, and
enter the following command:

> ping 192.168.0.2

If you changed the board IP address when you set up the network adapter, replace
192.168.0.2 with your board IP address. If the Gigabit Ethernet connection has been
set up, you receive the ping reply from the FPGA development board.
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PCI Express Connection

If you are using a PCI Express connection, after you program the FPGA, restart the
host computer. The host computer cannot detect the new PCI Express device without
a restart.

If you are using a PCI Express connection with an Altera board, the board receives
power through the host computer. If the host computer turns off, the FPGA loses
your programmed design. To restart without losing power to the board, from the
Start menu, select Restart. To avoid disrupting a long simulation, disable the
Sleep settings for the host computer.

After the restart, check the Device Manager in Windows. A new FPGA-in-the-loop
device appears in the list.
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Run Simulation

In Simulink, run the model that includes the FIL Simulation block. The results of the
FIL simulation should match the results of the Simulink reference model or of the
original HDL code.

Note: RAM Initialization: Simulink starts from time 0 every time, which means the RAM
in a Simulink model is initialized to zero for each run. However, this assumption is not
true in hardware. RAM in the FPGA holds its value from the end of one simulation to the
start of the next. If you have RAM in your design, the first simulation matches Simulink,
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but subsequent runs may not match. The workaround is to reload the FPGA bitstream
before rerunning the simulation. To reload the bitstream, click the Load on the FIL
block mask.

More About
• “System Object Generation with the FIL Wizard” on page 13-17
• “FPGA-in-the-Loop Simulation Workflows” on page 12-2
• “Guided Hardware Setup” on page 12-8
• “Verify HDL Implementation of PID Controller Using FPGA-in-the-Loop” on page

16-2
• “Verify Digital Up-Converter Using FPGA-in-the-Loop” on page 16-24
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System Object Generation with the FIL Wizard

In this section...

“Step 1: Set Up FPGA Design Software Tools” on page 13-2
“Step 2: Start FIL Wizard” on page 13-18
“Step 3: Set FIL Options for System Object” on page 13-18
“Step 4: Add HDL Source Files for System Object” on page 13-21
“Step 5: Verify DUT I/O Ports for System Object” on page 13-23
“Step 6: Specify Output Types for System Object” on page 13-24
“Step 7: Specify Build Options for System Object” on page 13-26
“Step 8: Initiate Build” on page 13-27
“Step 9: Integrate and Simulate” on page 13-29

Step 1: Set Up FPGA Design Software Tools

Xilinx Software

Set up your system environment for accessing Xilinx tools from MATLAB with the
function hdlsetuptoolpath. This function adds the specified installation folder to the
MATLAB search path.

• Xilinx ISE —
hdlsetuptoolpath('ToolName','Xilinx ISE','ToolPath','C:\Xilinx\14.2\ISE_DS\ISE\bin\nt64')

This example assumes that the Xilinx ISE design suite is installed at C:\Xilinx
\14.2\ISE_DS\ISE\bin\nt64.

• Xilinx Vivado —
hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath','C:\apps\Vivado\2013.4-mw-0\Win\bin\vivado')

This example assumes that Xilinx Vivado is installed at C:\apps\Vivado\2013.4-
mw-0\Win\bin\vivado.

Altera Software

Set up your system environment for accessing Altera tools from MATLAB with the
function hdlsetuptoolpath. This function adds the specified installation folder to the
MATLAB search path. For example:
hdlsetuptoolpath('ToolName','Altera Quartus II','ToolPath','C:\Altera\12.0\quartus\bin64')
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This example assumes that the Altera FPGA design software is installed at C:\Altera
\12.0\quartus\bin64.

Step 2: Start FIL Wizard

Open the FPGA-in-the-Loop Wizard.

In the MATLAB command window, type the following:

>> filWizard

To restore a previous session, use this command:

filWizard('./Subsystem_fil/Subsystem_fil.mat')

Step 3: Set FIL Options for System Object
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(This page is for FIL System object. For Simulink block FIL options, see “Step 3: Set FIL
Options for FIL Block” on page 13-4.)

In the FIL Options page:

1 FIL Simulation with: Select MATLAB System Object.
2 Board Name: Select an FPGA development board. If you have not yet downloaded

an HDL Verifier FPGA board support package, see “Download FPGA Board Support
Package” on page 12-3. (If you do not see any boards listed, then you have not yet
downloaded a support package). If you plan to define a custom board yourself, see
“FPGA Board Customization” on page 17-2.

3 FPGA-in-the-Loop Connection: FIL simulation connection method. The options
in the drop-down menu update depending on the connection methods supported
for the target board you selected. If the target board and HDL Verifier support the
connection, you can choose Ethernet, JTAG, or PCI Express.

4 Advanced Options:

When you select an Ethernet connection, you can adjust the board IP and MAC
addresses, if necessary.

Option Instructions

Board IP address Use this option for setting the IP address of the board if it
is not the default IP address (192.168.0.2).

If the default board IP address (192.168.0.2) is in use by
another device, or you need a different subnet, change the
Board IP address according to the following guidelines:

• The subnet address, typically the first three bytes of
board IP address, must be the same as the subnet of
the host IP address.

• The last byte of the board IP address must be different
from the last byte of the host IP address.

• The board IP address must not conflict with the IP
addresses of other computers.

For example, if the host IP address is 192.168.8.2, then
you can use 192.168.8.3, if available.
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Option Instructions

Board MAC address Under most circumstances, you do not need to change the
board MAC address. If you connect more than one FPGA
development board to a single host computer, change the
board MAC address for any additional boards so that each
address is unique. You must have a separate NIC for each
board.

To change the Board MAC address, click in the  Board
MAC address field. Specify an address that is different
from that belonging to any other device attached to your
computer. To obtain the Board MAC address for a specific
FPGA development board, refer to the label affixed to the
board or consult the product documentation.

FPGA system clock frequency (MHz): Enter a target clock frequency. For Altera
boards and Xilinx ISE-supported boards, filWizard checks the requested frequency
against those possible for the requested board. If the requested frequency is not
possible for this board, filWizard returns an error and suggests an alternate
frequency. For Xilinx Vivado-supported boards, or PCI Express boards, filWizard
cannot check the frequency. The synthesis tools make a best effort attempt at the
requested frequency but may choose an alternate frequency if the specified frequency
was not achievable. The default is 25 MHz.

5 Click Next.
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Step 4: Add HDL Source Files for System Object

(This page is for FIL System object. For Simulink block HDL source files, see “Step 4:
Add HDL Source Files for FIL Block” on page 13-6.)

In the Source Files page:

1 Specify the HDL design to be cosimulated in the FPGA. These files are the HDL
design files to be verified on the FPGA board.

Indicate source files by clicking Add. Select files using the file selection dialog box.

13-21



13 FIL Interface Generation and Simulation

The FIL wizard attempts to identify the source file types. If any of the file types is
not what you expect, you can change it by selecting from the File Type drop-down
list. Acceptable file types are:

• VHDL
• Verilog
• Netlist
• Tcl script
• Constraints
• Others

"Others" refers to the following:

• For Altera, files specified as Other are added to the FPGA project, but they
have no impact on the generated block. For example, you can put some
comments in a “readme” file and include it in this file list.

• For Xilinx, files specified as Other can be any file accepted by Xilinx ISE. ISE
looks at the file extension to determine how to use this file. For example, if you
add foo.vhd to the list and specify it as Other, ISE treats the file as a VHDL
file.

2 Specify which file contains the top-level HDL file.

Check the box on the row of the HDL file that contains the top-level HDL module
in the column titled Top-level. The FIL wizard automatically fills the Top-level
module name field with the name of the selected HDL file. If the top-level module
name and file name do not match, you can manually change the top-level module
name in this dialog box. Indicate the top-level module name before you continue.

3 (Optional) To display the full paths to the source files, check the box titled Show full
paths to source files.

4 Click Next.
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Step 5: Verify DUT I/O Ports for System Object

(This page is for FIL with a System object. For Simulink, see “Step 5: Verify DUT I/O
Ports for FIL Block” on page 13-8.)

In the DUT I/O Ports page:

1 Review the port listing. The FIL wizard parses the top-level HDL module to obtain
all the I/O ports and display them in the DUT I/O Ports table. The parser attempts
to determine the port types from the port names. The wizard then displays these
signals under Port Type.

Make sure all input/output/reset ports/clocks are mapped as you expect. If the parser
assigned an incorrect port type for any port, you can manually change the signal. For
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synchronous design, specify a Clock, Reset, or, if desired, a Clock enable signal. The
port types specified in this table must be the same as in the HDL code. There must
be at least one output port.

Select Manually enter port information to add or remove signals.

Click Regenerate to reload the table with the original port definitions (from the
HDL code).

2 Click Next.

Step 6: Specify Output Types for System Object

13-24



 System Object Generation with the FIL Wizard

(This page is for FIL System object. For Simulink block output types, see “Step 6: Specify
Output Types for FIL Block” on page 13-9.)

In the Output Types page:

1 Specify output data types. The wizard assigns data types. If any output data type is
not what you expect, manually change the type.

Select from:

• Fixedpoint

• Integer

• Logical

The data type can depend on the specified bit width.

You can specify the output type to be Signed, Unsigned, or Fraction Length.
2 Click Next.
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Step 7: Specify Build Options for System Object

(This page is for FIL System object. For Simulink, see “Step 7: Specify Build Options for
FIL Block” on page 13-10.)

In the Build Options page:

• Specify the folder for the output files. You can use the default option. Usually the
default is a subfolder named after the top-level module, located under the current
folder.

• The Summary displays the locations of the ISE project file and the FPGA
programming file. You may need those two files for advanced operations on the FIL
block mask.
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Step 8: Initiate Build

Click Build to initiate FIL System object generation.

1 The FIL wizard generates the following files:

• In the ./toplevel_fil/ folder, a MATLAB function named
toplevel_programFPGA.m, where toplevel is the name of the HDL top level.
This file contains the code to download the FPGA programming file to the FPGA.

function toplevel_programFPGA

  %Load the bitstream in the FPGA

  filProgramFPGA('Xilinx', '/dir/mybitstream.bit', 1);

end

• A MATLAB file named toplevel_fil.m, where toplevel is the name
of the HDL top level. This file contains a class definition derived from
hdlverifier.FILSimulation and initializes the private properties. This file is
located in the current folder.

The following is a sample of a class definition file generated using the FIL wizard
from a DUT named fft8.
classdef fft8_fil <  hdlverifier.FILSimulation

%fft8_fil is a filWizard generated class used for FPGA-In-the-Loop

%   simulation with the 'fft8' DUT.

%   fft8_fil connects MATLAB with a FPGA and cosimulate with it by 

%   writing inputs in the FPGA and reading outputs from the FPGA.

%

%   MYFIL = fft8_fil

%

%   Step method syntax:

%

%   [out1, out2, ...] = step(MYFIL, in1, in2, ...) connect to the FPGA,

%   write in1, in2, ... to the FPGA and read out1, out2, ... from 

%   the FPGA

%

%   fft8_fil methods:

%

%   step        - See above description for use of this method

%   release     - Allow property value and input characteristics changes, and

%                 release connection to FPGA board

%   clone       - Create fft8_fil object with same property values

%   isLocked    - Locked status (logical)

%   programFPGA - Load the programming file in the FPGA

%

%   fft8_fil properties:

%

%   DUTName                  - DUT top level name

%   InputSignals             - Input paths in the HDL code

%   InputBitWidths           - Width in bit of the inputs

%   OutputSignals            - Output paths in the HDL code
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%   OutputBitWidths          - Width in bit of the outputs

%   OutputDataTypes          - Data type of the outputs

%   OutputSigned             - Sign of the outputs

%   OutputFractionLengths    - Fraction lengths of the outputs

%   OutputDownsampling       - Downsampling factor and phase of the outputs

%   OverclockingFactor       - Overclocking factor of the hardware

%   SourceFrameSize          - Frame size of the source (only for HDL source block) 

%   Connection               - Parameters for the connection with the board

%   FPGAVendor               - Name of the FPGA chip vendor

%   FPGABoard                - Name of the FPGA board

%   FPGAProgrammingFile      - Path of the Programming file for the FPGA

%   ScanChainPosition        - Position of the FPGA in the JTAG scan chain

%

%   File Name: fft8_fil.m

%   Created: 26-Apr-2012 18:18:06

% 

%   Generated by FIL Wizard

    properties (Nontunable)

        DUTName = 'fft8';

    end

    

    methods

        function obj = fft8_fil

            

            %THE FOLLOWING PROTECTED PROPERTIES ARE SPECIFIC TO THE HW DUT

            %AND MUST NOT BE EDITED (RERUN THE FIL WIZARD TO CHANGE THEM)

            obj.InputSignals = char('Xin_re','Xin_im');

            obj.InputBitWidths = [10,10];

            obj.OutputSignals = char('Xout_re','Xout_im');

            obj.OutputBitWidths = [13,13];

            obj.Connection = char('UDP','192.168.0.2','00-0A-35-02-21-8A'); 

            obj.FPGAVendor = 'Xilinx';

            obj.FPGABoard = 'XUP Atlys Spartan-6 development board';

            obj.ScanChainPosition = 1 ;

            

            %THE FOLLOWING PUBLIC PROPERTIES ARE RELATED TO THE SIMULATION

            %AND CAN BE EDITED WITHOUT RERUNING THE FIL WIZARD

            obj.OutputSigned = [true,true];

            obj.OutputDataTypes = char('fixedpoint','fixedpoint');

            obj.OutputFractionLengths = [9,9];

            obj.OutputDownsampling = [1,0];

            obj.OverclockingFactor = 1;

            obj.SourceFramieSize = 1;

            obj.FPGAProgrammingFile = 'S:\MATLAB\demo\fft8_fil\fft8_fil.bit';

        end

    end

end

2 The FIL wizard opens a command window.

• In this window, the FPGA design software performs synthesis, fit, PAR, and
FPGA programming file generation.

• When the process completes, a message in the command window prompts you to
close the window.
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Step 9: Integrate and Simulate

Create System Object

Create a custom FILSimulation System object from the class definition file derived
using the FIL wizard. This code snippet creates an instance of the class and initializes all
properties.

MYFIL = toplevel_fil

If you generated your FIL System object from the HDL Workflow Advisor, it is unlikely
that you need to adjust any settings. If you generated your FIL System object using the
FIL Wizard, you may want to adjust some settings. You can adjust any writable property
using one of these methods:

• Change the property with the set method:

MYFIL.set('FPGAProgrammingFile','c:\work\filfiles')

• Set the property directly:

MYFIL.FPGAProgrammingFile='c:\work\filfiles'

• Edit toplevel_fil.m directly. If you edit the .m file, instantiate the object in the
workspace again, if you had done so previously.

For details about the object properties, see hdlverifier.FILSimulation.

Load Programming Files onto FPGA

You can program the FPGA using either the programFPGA function, or the
programFPGA method of the FIL System object. If you have not yet performed the
“Guided Hardware Setup” on page 12-8, do so now before loading the programming files.

• programFPGA function:
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./toplevel_fil/toplevel_programFPGA

• programFPGA method:

MYFIL.programFPGA

MYFIL is an instance of a FILSimulation object.

Run Simulation

1 Call the System object in your MATLAB code.
2 Run your MATLAB code as you normally would. Make sure that you have performed

the “Guided Hardware Setup” on page 12-8 before beginning.

The first call to the object establishes communication with the FPGA board.

More About
• “Block Generation with the FIL Wizard” on page 13-2
• “FPGA-in-the-Loop Simulation Workflows” on page 12-2
• “Guided Hardware Setup” on page 12-8
•
•
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FIL Simulation with HDL Workflow Advisor for Simulink

In this section...

“Step 1: Start HDL Workflow Advisor” on page 14-2
“Step 2: Set Target and Target Frequency” on page 14-2
“Step 3: Prepare Model for HDL Code Generation” on page 14-4
“Step 4: HDL Code Generation” on page 14-4
“Step 5: Set FPGA-in-the-Loop Options” on page 14-4
“Step 6: Generate FPGA Programming File and FPGA-in-the-Loop Model” on page
14-8
“Step 7: Load Programming File onto FPGA” on page 14-10
“Step 8: Run Simulation” on page 14-10

Step 1: Start HDL Workflow Advisor

Follow instructions for invoking the HDL Workflow Advisor. See “Open and Run Tasks in
the HDL Workflow Advisor” (HDL Coder).

Note: You must have an HDL Coder license to generate HDL code using the HDL
Workflow Advisor.

Step 2: Set Target and Target Frequency

At step 1, Set Target, click 1.1 Set Target Device and Synthesis Workflow and do
the following:

1 Select FPGA-in-the-Loop from the pull-down list at Target Workflow.
2 Under Target Platform, select a development board from the pull-down list.

Family, Device, Package, and Speed are filled in by the HDL Workflow Advisor.
If you have not yet downloaded an HDL Verifier FPGA board support package, select
Get more boards. Then return to this step after you have downloaded an FPGA
board support package.

3 For Folder, enter the folder name to save the project files into. The default is
hdl_prj under the current working folder.
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After you select a FIL target in Step 1.1, click 1.2 Set Target Frequency.

1 Set the Target Frequency (MHz) for the clock speed of your design implemented
on the FPGA. The available range of frequencies is shown in the Frequency Range
(MHz) parameter. For Altera boards and Xilinx ISE-supported boards, Workflow
Advisor checks the requested frequency against those possible for the requested
board. If the requested frequency is not possible for this board, Workflow Advisor
returns an error and suggests an alternate frequency. For Xilinx Vivado-supported
boards, or PCI Express boards, Workflow Advisor cannot check the frequency. The
synthesis tools make a best effort attempt at the requested frequency but may choose
an alternate frequency if the specified frequency was not achievable. The default is
25 MHz.
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Step 3: Prepare Model for HDL Code Generation

At step 2, Prepare Model for HDL Code Generation, perform steps 2.1–2.4 as
described in “Prepare Model For HDL Code Generation Overview” (HDL Coder).

In addition, perform step 2.5 Check FPGA-in-the-Loop Compatibility to verify that
the model is compatible with FIL.

Step 4: HDL Code Generation

At step 3, HDL Code Generation, perform steps 3.1 and 3.2 as described in “HDL Code
Generation Overview” (HDL Coder).

Step 5: Set FPGA-in-the-Loop Options

At step 4.1, Set FPGA-in-the-Loop Options, change these options if necessary:

• FPGA-in-the-Loop Connection: FIL simulation connection method. The options
in the drop-down menu update depending on the connection methods supported
for the target board you selected. If the target board and HDL Verifier support the
connection, you can choose Ethernet, JTAG, or PCI Express.

• Board Address:

When you select an Ethernet connection, you can adjust the board IP and MAC
addresses, if necessary.
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Option Instructions

Board IP address Use this option for setting the IP address of the board if it
is not the default IP address (192.168.0.2).

If the default board IP address (192.168.0.2) is in use by
another device, or you need a different subnet, change the
Board IP address according to the following guidelines:

• The subnet address, typically the first three bytes of
board IP address, must be the same as the subnet of the
host IP address.

• The last byte of the board IP address must be different
from the last byte of the host IP address.

• The board IP address must not conflict with the IP
addresses of other computers.

For example, if the host IP address is 192.168.8.2, then
you can use 192.168.8.3, if available.

Board MAC address Under most circumstances, you do not need to change the
board MAC address. If you connect more than one FPGA
development board to a single host computer, change the
board MAC address for any additional boards so that each
address is unique. You must have a separate NIC for each
board.

To change the Board MAC address, click in the  Board
MAC address field. Specify an address that is different
from that belonging to any other device attached to your
computer. To obtain the Board MAC address for a specific
FPGA development board, refer to the label affixed to the
board or consult the product documentation.

• Specify additional source files for the HDL design:

Indicate additional source files for the DUT using Add. To (optionally) display the
full paths to the source files, check the box titled Show full paths to source files.
The HDL Workflow Advisor attempts to identify the source file type. If the file type is
incorrect, you can change it by selecting from the File Type drop-down list.
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FIL Over Ethernet
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FIL Over JTAG
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FIL Over PCI Express

Step 6: Generate FPGA Programming File and FPGA-in-the-Loop Model

At step 4.2, Build FPGA-in-the-Loop, click Run this task.

During the build process, the following actions occur:

• The HDL Workflow Advisor generates a FIL block named after the top-level module
and places it in a new model. The next figure shows an example of the new model
containing the FIL block.
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• After new model generation, the HDL Workflow Advisor opens a command window:

• In this window, the FPGA design software performs synthesis, fit, PAR, and FPGA
programming file generation.

• When the process completes, a message in the command window prompts you to
close the window.

• The HDL Workflow Advisor builds a test bench model around the generated FIL
block.
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Step 7: Load Programming File onto FPGA

Ensure your FPGA development board is set up, powered on, and connected to your
machine as directed by the board manufacturer documentation. Then, perform the
following steps to program the FPGA:

1 Double-click the FIL block in your Simulink model to open the block mask.
2 On the Main tab, click Load to download the programming file to the FPGA.

The load process may take several minutes, depending on how large the subsystem
is. For very large subsystems, the process can take an hour or longer.

For further troubleshooting tips, see “Load Programming File onto FPGA” on page 13-12.

Step 8: Run Simulation

In Simulink, click Simulation > Run or the Run Simulation button in your Simulink
model window. The results of the FIL simulation should match those of the Simulink
reference model or of the original HDL code.

Note: Regarding initialization: Simulink starts from time 0 every time, which means the
RAM in Simulink is initialized to zero. However, this is not true in hardware. If you have
RAM in your design, the first simulation will match Simulink, but any subsequent runs
may not match.

The workaround is to reload the FPGA bitstream before re-running the simulation. To do
this, click Load on the FIL block mask.
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FIL Simulation with HDL Workflow Advisor for MATLAB

In this section...

“Step 1: Start HDL Workflow Advisor” on page 14-11
“Step 2: Select Target” on page 14-11
“Step 3: Select Workflow” on page 14-11
“Step 4: Select FPGA-in-the-Loop Options” on page 14-11
“Step 5: Generate FPGA Programming File and Run Simulation” on page 14-16

Step 1: Start HDL Workflow Advisor

Follow instructions for invoking the HDL Workflow Advisor in MATLAB. See “Open and
Run Tasks in the HDL Workflow Advisor” (HDL Coder).

Note: You must have an HDL Coder license to generate HDL code using the HDL
Workflow Advisor.

Step 2: Select Target

Under Select Code Generation Target, make sure Workflow is set to Generic
ASIC/FPGA.

Step 3: Select Workflow

Under HDL Verification, select Verify with FPGA-in-the-Loop.

Step 4: Select FPGA-in-the-Loop Options

1 Generate FPGA-in-the-Loop test bench: Select this option to generate a test
bench for simulation with FPGA-in-the-loop.

2 Log outputs for comparison plots: This optional selection lets you log and plot
the outputs of the reference design function and the FPGA.

3 Board Name: Select one of the FPGA development boards. If you have not yet
downloaded an HDL Verifier FPGA board support package, select Get more
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boards. Then return to this step after you have downloaded an FPGA board support
package.

4 FPGA-in-the-Loop Connection: FIL simulation connection method. The options
in the drop-down menu update depending on the connection methods supported
for the target board you selected. If the target board and HDL Verifier support the
connection, you can choose Ethernet, JTAG, or PCI Express.

5 Board IP Address and Board MAC Address:

When you select an Ethernet connection, you can adjust the board IP and MAC
addresses, if necessary.

Option Instructions

Board IP address Use this option for setting the IP address of the board if it
is not the default IP address (192.168.0.2).

If the default board IP address (192.168.0.2) is in use by
another device, or you need a different subnet, change the
Board IP address according to the following guidelines:

• The subnet address, typically the first three bytes of
board IP address, must be the same as the subnet of
the host IP address.

• The last byte of the board IP address must be different
from the last byte of the host IP address.

• The board IP address must not conflict with the IP
addresses of other computers.

For example, if the host IP address is 192.168.8.2, then
you can use 192.168.8.3, if available.

Board MAC address Under most circumstances, you do not need to change the
board MAC address. If you connect more than one FPGA
development board to a single host computer, change the
board MAC address for any additional boards so that each
address is unique. You must have a separate NIC for each
board.

To change the Board MAC address, click in the  Board
MAC address field. Specify an address that is different
from that belonging to any other device attached to your
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Option Instructions

computer. To obtain the Board MAC address for a specific
FPGA development board, refer to the label affixed to the
board or consult the product documentation.

6 Additional files

Enter the names of any additional source files for the DUT. If you have more than
one additional source file, use the ... button to add more.

7 FPGA-in-the-Loop Test Bench Simulation Settings:

If you want the HDL Workflow Advisor to open the FIL simulation, check the box for
Simulate generated FPGA-in-the-Loop test bench.
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FIL Over Ethernet
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FIL Over JTAG
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FIL Over PCI Express

Step 5: Generate FPGA Programming File and Run Simulation

Click Run. If you have not yet run the previous tasks, right-click Verify with FPGA-in-
the-Loop and select Run to Selected Task.
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If you selected Simulate generated FPGA-in-the-Loop test bench, this step loads
the FPGA programming file onto the FPGA, and runs the automatically generated test
bench with FPGA-in-the-loop.

If you did not select Simulate generated FPGA-in-the-Loop test bench, load
the FPGA programming file manually. You can program the FPGA using either the
programFPGA function or the programFPGA method. Reminder: if you have not yet
performed the “Guided Hardware Setup” on page 12-8 or “Set Up FPGA Design Software
Tools” on page 12-7, do so now before loading the programming files.

• programFPGA function:

./toplevel_fil/toplevel_programFPGA

• programFPGA method:

MYFIL.programFPGA

Run your MATLAB code, including the System object as you normally would.

The first call to the step method establishes communication with the FPGA board.
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Troubleshooting FIL

If you get a message or error at any time during the FIL process (from generating the
FIL block to running the simulation), consult one of the following tables for a possible
reason and solution.
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16 FIL Examples

Verify HDL Implementation of PID Controller Using FPGA-in-the-
Loop

This example shows you how to set up an FPGA-in-the-Loop (FIL) application using HDL
Verifier™. The application uses Simulink® and an FPGA development board to verify
the HDL implementation of a proportional-integral-derivative (PID) controller. In this
example, Simulink generates the desired position of a motor and simulates the motor
controlled by this PID controller.

Requirements and Prerequisites

Products required for this example:

• MATLAB
• Simulink
• Fixed-Point Designer
• HDL Verifier
• FPGA design software (Xilinx® ISE® design suite, or Xilinx® Vivado® design suite,

or Altera® Quartus® II design software)
• One of the supported FPGA development boards and accessories
• For connection using Ethernet: Gigabit Ethernet Adapter installed on host computer,

Gigabit Ethernet crossover cable
• For connection using JTAG: USB Blaster I or II cable and driver for Altera FPGA

boards. Digilent® JTAG cable and driver for Xilinx FPGA boards.
• For connection using PCI Express®: FPGA board installed into PCI Express slot of

host computer.

Prerequisites:

MATLAB® and FPGA design software can either be locally installed on your computer
or on a network accessible device. If you use software from the network you will need
a second network adapter installed in your computer to provide a private network to
the FPGA development board. Consult the hardware and networking guides for your
computer to learn how to install the network adapter.
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Step 1: Set Up FPGA Development Board

Skip this step and step 2 if you are using PCI Express connection for simulation. If
you have not set up your PCI Express connection, use the support package installation
software to guide you through PCI Express setup.

Use the following steps to set up your FPGA development board.

1 Make sure that the power switch remains OFF.
2 Connect the AC power cord to the power plug. Plug the power supply adapter cable

into the FPGA development board.
3 Connect the Ethernet connector on the FPGA development board directly to the

Ethernet adapter on your computer using the crossover Ethernet cable.
4 Use the JTAG download cable to connect the FPGA development board with the

computer.
5 Make sure that all jumpers on the FPGA development board are in the factory

default position.

Step 2: Set Up Host Computer-Board Connection

Skip this step if you are using JTAG connection for simulation. For connection with
Ethernet, you must have a Gigabit Ethernet network adapter on your computer to run
this example.

On Windows® 7, do the following steps:

1 Open the Control Panel.
2 Type View network connections in the search bar. Select View network

connections in the search results.
3 Right click the connection icon to your FPGA development board and select

Properties from the pop-up menu.
4 Under This connection uses the following items, select Internet Protocol

Version 4 (TCP/IPv4) and click Properties.
5 Select Use the following IP address:. Set IP address to 192.168.0.1. If this

address is in use by another computer on your network, change it to any available IP
address on this subnet, such as 192.168.0.100. This is your host computer address.
Set the Subnet mask to 255.255.255.0. Your TCP/IP properties should now look the
same as in the following figure:
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On Windows® Vista, do the following steps:

1 Open the Control Panel.
2 Click Network and Sharing Center, and then click Manage network

connections.
3 Right click the connection icon to your FPGA development board and select

Properties from the pop-up menu.
4 Under This connection uses the following items, select Internet Protocol

Version 4 (TCP/IPv4) and click Properties.

16-4



 Verify HDL Implementation of PID Controller Using FPGA-in-the-Loop

5 Select Use the following IP address:. Set IP address to 192.168.0.1. If this
address is in use by another computer on your network, change it to any available IP
address on this subnet, such as 192.168.0.100. This is your host computer address.
Set the Subnet mask to 255.255.255.0.

On Windows XP®, do the following steps:

1 Open the Control Panel.
2 Open Network connections.
3 Right click the connection icon to your FPGA development board and select

Properties from the pop-up menu.
4 Under This connection uses the following items, select Internet Protocol

(TCP/IP) and click Properties.
5 Select Use the following IP address:. Set IP address to 192.168.0.1. If this

address is in use by another computer on your network, change it to any available IP
address on this subnet, such as 192.168.0.100. This is your host computer address.
Set the Subnet mask to 255.255.255.0.

On Linux®:

Use the ifconfig command to set up your local address. For example:

% ifconfig eth1 192.168.0.1

In this example, eth1 is the second Ethernet adapter on the Linux computer. Check your
system to determine which Ethernet adapter is connected to the FPGA development
board. The above command sets the local IP address to 192.168.0.1. If this address is in
use by another computer on your network, change it to any available IP address on this
subnet, such as 192.168.0.100.

Step 3: Prepare Example Resources

Set up an examples folder, copy example files, set up access to FPGA design software,
and open model.

1. Create a folder outside the scope of your MATLAB installation folder into which you
can copy the example files. The folder must be writable. This example assumes that the
folder is located at C:\MyTests.

2. Start MATLAB and set the current directory in MATLAB to the folder you just
created. For example:
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cd C:\MyTests

3. Enter the following MATLAB command:

copyFILDemoFiles('pid')

This command creates the sub folder .\pid_hdlsrc in your current folder and copies all
the source files under matlabroot\toolbox\shared\eda\fil\fildemos\fil_pid into it.
matlabroot is the MATLAB root folder on your system. You will now have the following
files in C:\MyTests\pid_hdlsrc:

• D_component.vhd
• I_component.vhd
• Controller.vhd

4. Set Up FPGA design software

Before using FPGA-in-the-Loop, set up your system environment for accessing FPGA
design software. You can use the function hdlsetuptoolpath to add ISE or Quartus II to
the system path for the current MATLAB session.

For Xilinx FPGA boards with Spartan-6 or Virtex-6 FPGAs, run:

hdlsetuptoolpath('ToolName', 'Xilinx ISE', 'ToolPath', 'C:\Xilinx\13.1\ISE_DS\ISE\bin\nt64\ise.exe');

This example assumes that the Xilinx ISE executable is C:\Xilinx\13.1\ISE_DS\ISE
\bin\nt64\ise.exe. Substitute with your actual executable if it is different.

For Xilinx FPGA boards with 7-series FPGAs, run:

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath','C:\Xilinx\Vivado\2013.4\bin\vivado.bat');

This example assumes that the Xilinx Vivado executable is C:\Xilinx\Vivado
\2013.4\bin\vivado.bat. Substitute with your actual executable if it is different.

For Altera boards, run:

hdlsetuptoolpath('ToolName','Altera Quartus II','ToolPath','C:\altera\11.0\quartus\bin\quartus.exe');

This example assumes that the Altera Quartus II executable is C:\altera\11.0\quartus
\bin\quartus.exe. Substitute with your actual executable if it is different.
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5. Open the fil_pid.mdl model.

This model contains a fixed-point PID controller implemented with basic Simulink
blocks. This model also contains a DC motor model controlled by this PID controller as
well as the desired DC motor position as the input stimulus.

Run this model now and observe the desired and actual motor positions in the scope.

Step 4: Launch FPGA-in-the-Loop (FIL) Wizard

Launch the FPGA-in-the-Loop Wizard by doing the following:

From the Code menu in the fil_pid model window, select Verification Wizards ->
FPGA-in-the-Loop (FIL)....
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Alternatively, you can enter the filWizard command at the MATLAB command prompt.

filWizard

Step 5: Specify Hardware Options in FIL Wizard

Set the FIL options for the FPGA development board.

1. Specify if the wizard will generate a FIL Simulink block or a FILSimulation MATLAB
System Object. For this example, select Simulink for FIL simulation with Simulink.

2. For Board Name, select the FPGA development board connected to your host
computer. If your board is not on the list, select one of the following options:

• "Get more boards..." to download the FPGA board support package(s) (this option
starts the Support Package Installer).

• "Create custom board..." to create the FPGA board definition file for your particular
FPGA board (this option starts the New FPGA Board Manager).
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3. Select the connection for simulation. The available connection methods are Ethernet
and JTAG. Not all boards support both connection methods.

4. Ethernet connection only: If you changed your computer's IP address to a different
subnet from 192.168.0.x when you set up the network adapter, or if the default board IP
address 192.168.0.2 is in use by another device, expand Advanced Options and change
the Board IP address according to the following guidelines:
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• The subnet address, typically the first three bytes of board IP address, must be the
same as those of the host IP address.

• The last byte of the board IP address must be different from that of the host IP
address.

• The board IP address must not conflict with the IP addresses of other computers.

For example, if the host IP address is 192.168.8.2, then you can use 192.168.8.3 if it is
available. Do not change Board MAC address.

5. Optional: If you would like to change the DUT clock frequency from the default
(25MHz), you can expand Advanced Options and change the FPGA system clock
frequency (MHz).

6. Click Next to continue.

Step 6: Specify HDL Files in the FIL Wizard

Specify the HDL design to be implemented in the FPGA.

1. Click Add and browse to the directory you created in Prepare Example Resources.

2. Select these HDL files:

• Controller.vhd
• D_component.vhd
• I_component.vhd

These are the HDL design files to be verified on the FPGA board. 3. In the Source Files
table, check the checkbox on the row of file Controller.vhd to specify that this HDL file
contains the top-level HDL module.
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The FIL Wizard automatically fills the Top-level module name field with the name
of the selected HDL file; in this case, Controller. In this example, the top-level module
name matches the file name so that you do not need to change it. If the top-level module
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name and file name did not match, you would manually correct the top-level module
name in this dialog.

Click Next to continue.

Step 7: Review I/O Ports in FIL Wizard

The FIL Wizard parses the top-level HDL module Controller in Controller.vhd to obtain
all the I/O ports and display them in the DUT I/O Ports table. The parser attempts
to automatically determine the possible port types by looking at the port names and
displays these signals under Port Type.

1. Review the port listing. If the parser assigned an incorrect port type for any given port,
you can manually change the signal. For synchronous design, specify a Clock, Reset,
or Clock enable signal. In this example, the FIL Wizard automatically fills the table
correctly.
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2. Click Next to continue.
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Step 8: Set Output Data Types in FIL Wizard

1. For the HDL output control_signal change Data Type to Fixedpoint, Sign to
Signed and Fraction Length to 28. This will makes the generated FIL block set the
output signal of the FPGA design-under-test (DUT) to the correct data type.

16-14



 Verify HDL Implementation of PID Controller Using FPGA-in-the-Loop

2. Click Next to continue.
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Step 9: Review Build Options in FIL Wizard

1. Specify the folder for the output files. For this example, use the default option, which is
a subfolder named Controller_fil under the current directory.

The Summary displays the locations of the FPGA project file and the FPGA
programming file. You may need those two files for advanced operations.
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2. Click Build to start the build process.

During the build process, the following actions occur:
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• A FIL block named Controller is generated in a new model as shown in the following
figure. Do not close this model.

• After new model generation, the FIL Wizard opens a command window where the
FPGA design software performs synthesis, fit, place-and-route, timing analysis, and
FPGA programming file generation.

• When the FPGA design software process is finished, a message in the command-line
window lets you know you can close the window. Close the window and proceed to the
next step.
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Step 10: Set Up Model

In the fil_pid model, replace the Controller subsystem with the FIL block generated
in the new model. The modified fil_pid model now appears as shown in the following
illustration:

Step 11: Program FPGA

1. Switch FPGA development board power ON.

2. Double-click the FIL block in the fil_pid model to open the block mask.

3. In the opened block mask, click Load.
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If your board is connected to the host computer through the JTAG cable properly,
a message window displays to indicate that the FPGA programming file is loaded
successfully. Click OK to dismiss this dialog.
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4. Ethernet connection only: You can test if the FPGA board is connected to your host
computer properly through the ping test. Launch a command-line window and enter the
following command:

C:\MyTests> ping 192.168.0.2

If you changed the board IP address when you set up the network adapter, replace
192.168.0.2 with your board IP address. If the Gigabit Ethernet connection has been set
up properly, you should see the ping reply from the FPGA development board.

Step 12: Review Parameters of FIL Block

1. In the FIL block mask, click the Signal Attributes tab.
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2. Verify that the Data Type of the HDL signal control_signal is fixdt(1,32,28). If it is
not, change it.

3. Click OK to close the block mask.

Step 13: Run FIL

1. Start simulation of the fil_pid model.

2. When the simulation is done, view the waveform of the desired and actual positions of
the motor in the scope. Note that the results of FIL simulation should match those of the
Simulink reference model that you simulated in Prepare Example Resources.
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Verify Digital Up-Converter Using FPGA-in-the-Loop

This example shows you how to verify a digital up-converter design generated with Filter
Design HDL Coder™ using FPGA-in-the-Loop simulation.

Requirements

Products required for this example:

• MATLAB
• Simulink
• HDL Verifier
• Fixed-Point Designer
• Signal Processing Toolbox
• DSP System Toolbox
• Filter Design HDL Coder (optional)
• FPGA design software (Xilinx® ISE® or Vivado® design suite or Altera® Quartus® II

design software)
• One of the supported FPGA development boards and accessories (the ML403 board is

not supported for this example)
• For connection using Ethernet: Gigabit Ethernet Adapter installed on host computer,

Gigabit Ethernet crossover cable
• For connection using JTAG: JTAG cable with USB Blaster I or II, USB Blaster driver
• For connection using PCI Express®: FPGA board installed into PCI Express slot of

host computer.

Create Cascade Filter for DUC

A digital up-converter (DUC) is a digital circuit that converts a digital baseband signal
to a passband signal. A DUC is composed of three filtering stages; each stage filters the
input signal with a lowpass interpolating filter, followed by a sample rate change. In this
example, the DUC is a cascade of two FIR interpolation filters and a CIC interpolation
filter, as described in the example HDL Digital Up-Converter (DUC).

1. Create the two FIR and CIC filters.

pfir = [0.0007    0.0021   -0.0002   -0.0025   -0.0027    0.0013    0.0049    0.0032 ...

       -0.0034   -0.0074   -0.0031    0.0060    0.0099    0.0029   -0.0089   -0.0129 ...

       -0.0032    0.0124    0.0177    0.0040   -0.0182   -0.0255   -0.0047    0.0287 ...
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        0.0390    0.0049   -0.0509   -0.0699   -0.0046    0.1349    0.2776    0.3378 ...

        0.2776    0.1349   -0.0046   -0.0699   -0.0509    0.0049    0.0390    0.0287 ...

       -0.0047   -0.0255   -0.0182    0.0040    0.0177    0.0124   -0.0032   -0.0129 ...

       -0.0089    0.0029    0.0099    0.0060   -0.0031   -0.0074   -0.0034    0.0032 ...

        0.0049    0.0013   -0.0027   -0.0025   -0.0002    0.0021    0.0007 ];

hpfir = dsp.FIRInterpolator(2, pfir);

hpfir.FullPrecisionOverride = false;

hpfir.CoefficientsDataType = 'Custom';

hpfir.CustomCoefficientsDataType = numerictype([],16);

hpfir.ProductDataType = 'Custom';

hpfir.CustomProductDataType = numerictype([],31,31);

hpfir.AccumulatorDataType = 'Custom';

hpfir.CustomAccumulatorDataType = numerictype([],16,15);

hpfir.OutputDataType = 'Custom';

hpfir.CustomOutputDataType = numerictype([],16,15);

hpfir.RoundingMethod = 'Nearest';

cfir = [-0.0007   -0.0009    0.0039    0.0120    0.0063   -0.0267   -0.0592   -0.0237 ...

         0.1147    0.2895    0.3701    0.2895    0.1147   -0.0237   -0.0592   -0.0267 ...

         0.0063    0.0120    0.0039   -0.0009   -0.0007];

hcfir = dsp.FIRInterpolator(2, cfir);

hcfir.FullPrecisionOverride = false;

hcfir.CoefficientsDataType = 'Custom';

hcfir.CustomCoefficientsDataType = numerictype([],16);

hcfir.ProductDataType = 'Custom';

hcfir.CustomProductDataType = numerictype([],31,31);

hcfir.AccumulatorDataType = 'Custom';

hcfir.CustomAccumulatorDataType = numerictype([],16,15);

hcfir.OutputDataType = 'Custom';

hcfir.CustomOutputDataType = numerictype([],16,15);

hcfir.RoundingMethod = 'Nearest';

hcic = dsp.CICInterpolator(32, 1, 5);

hcic.FixedPointDataType = 'Minimum section word lengths';

hcic.OutputWordLength = 20;

2. Create a cascade filter using these filters.

hduc = dsp.FilterCascade(hpfir, hcfir, hcic);

The frequency response of the cascade filter is shown in the following figure.

fvtool(hduc,'Arithmetic','fixed');
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Generate HDL Code

When the cascade filter is ready, generate HDL code for the DUC using the Filter Design
HDL Coder function generatehdl, with the property 'AddPipelineRegisters' set to 'on'.

>> generatehdl(hduc, 'Name', 'hdlduc', 'AddPipelineRegisters', 'on', 'InputDataType', numerictype(1,16,15));

This option inserts pipeline registers between filter stages, and allows the generated
filter to be synthesized at a higher clock frequency.

If you do not have Filter Design HDL Coder, you can copy pre-generated HDL files to the
current directory using this command:

>> copyFILDemoFiles('duc');
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Set Up FPGA Design Software

Before using FPGA-in-the-Loop, make sure your system environment is set up properly
for accessing FPGA design software. You can use the function hdlsetuptoolpath to add
ISE or Quartus II to the system path for the current MATLAB session.

For Xilinx FPGA boards, run

hdlsetuptoolpath('ToolName', 'Xilinx ISE', 'ToolPath', 'C:\Xilinx\13.1\ISE_DS\ISE\bin\nt64\ise.exe');

This example assumes that the Xilinx ISE executable is C:\Xilinx\13.1\ISE_DS\ISE
\bin\nt64\ise.exe. Substitute with your actual executable if it is different.

For Altera boards, run

hdlsetuptoolpath('ToolName','Altera Quartus II','ToolPath','C:\altera\11.0\quartus\bin\quartus.exe');

This example assumes that the Altera Quartus II executable is C:\altera\11.0\quartus
\bin\quartus.exe. Substitute with your actual executable if it is different.

Configure and Build FPGA-in-the-Loop

The FIL Wizard guides you in configuring settings necessary for building FPGA-in-the-
Loop. Launch the wizard with the following command:

>> filWizard

1. In Hardware Options, select the FPGA development board connected to your host
computer. If necessary, you can also customize the Board IP and MAC Address under
Advanced Options. Click *Next" to continue.

2. In Source Files, add the following generated HDL files for the DUC to the source file
table using Browse.

hdlduc.vhd

hdlduc_stage1.vhd

hdlduc_stage2.vhd

hdlduc_stage3.vhd

Select the top-level checkbox next to hdlduc.vhd. Click *Next" to continue.

3. In DUT I/O Ports, the input and output port information, such as port name, direction,
width and port type are automatically generated from the HDL file. Port types, such
as Clock and Data, are generated based on port names; you may change the selection
as necessary. For this example, the generated port types are correct, and you can click
Next.
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4. In Build Options, specify the folder for FIL output files. You can use the default value
for this example. Click Build. Clicking Build causes the FIL Wizard to generate all the
necessary files for FPGA-in-the-Loop simulation and perform the following actions:

• Generates a FIL block in a new Simulink® model
• Opens a command-line window to compile the FPGA project and generate the FPGA

programming file

The FPGA project compilation process takes several minutes. When the process is
finished, you are prompted to close the command-line window. Close this window now.

Configure FIL Block

To prepare for FPGA-in-the-Loop simulation, follow the steps below to configure the FIL
block.

1. Open the test bench model fil_duc_model and copy the generated FIL block into the
model.
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2. Double-click the FIL block to open the block mask. Click Load to program the FPGA
with the generated programming file.

3. Under Runtime Options, change Overclocking factor to 128. This specifies that an
input value is sampled 128 times by the FPGA clock before the input changes value.

4. On the FIL block mask, click on the Signal Attributes tab. Change the data type for
filter_out to fixdt(1,20,-1) to match the data type of the behavioral filter block.

5. Click OK to close the block mask.

Verify Generated Filter

In this example, the generated filter running on FPGA is compared to a behavioral filter
block. Delays are added to the output of the behavioral filter to match the HDL latency of
the generated filter.

Run simulation. Observe the output waveforms from the behavioral filter block, the FIL
block, and the error margin. Because the behavioral filter block does not have pipeline
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registers, there are small differences between the behavioral filter block output and the
FIL block output. These errors are within the error margin.

This concludes the example.
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FPGA Board Customization

In this section...

“Feature Description” on page 17-2
“Custom Board Management” on page 17-2
“FPGA Board Requirements” on page 17-3

Feature Description

Both HDL Coder and HDL Verifier software include a set of predefined FPGA boards you
can use with the Turnkey or FPGA-in-the-loop (FIL) workflows. You can view the lists
of these supported boards in the HDL Workflow Advisor or in the FIL wizard. With the
FPGA Board Manager, you can add additional boards to use either of these workflows.
To add a board, you need the relevant information from the board specification
documentation.

The FPGA Board Manager is the hub for accessing wizards and dialog boxes that take
you through the steps necessary to create a custom board configuration. You can also
access options for:

• Importing a custom board
• Copying a board definition file for further modification
• Verifying a new board

Custom Board Management

You manage FPGA custom boards through the following user interfaces:

• “FPGA Board Manager” on page 17-21: portal to adding, importing, deleting, and
otherwise managing board definition files.

• “New FPGA Board Wizard” on page 17-25: This wizard guides you through
creating a custom board definition file with information you obtain from the board
specification documentation.

• “FPGA Board Editor” on page 17-38: user interface for viewing or editing board
information.
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To begin, review the “FPGA Board Requirements” on page 17-3 and then follow the
steps described in “Create Custom FPGA Board Definition” on page 17-7.

FPGA Board Requirements

• “FPGA Device” on page 17-3
• “FPGA Design Software” on page 17-3
• “General Hardware Requirements” on page 17-3
• “Ethernet Connection Requirements for FPGA-in-the-Loop” on page 17-4
• “JTAG Connection Requirements for FPGA-in-the-Loop” on page 17-6

FPGA Device

Select one of the following links to view a current list of supported FPGA device families:

• For use with FPGA-in-the-loop (FIL), see “Supported FPGA Device Families for Board
Customization”.

• For use with FPGA Turnkey, see “Supported FPGA Device Families for Board
Customization” (HDL Coder).

FPGA Design Software

Altera Quartus II or Xilinx ISE is required. See product documentation for HDL Coder or
HDL Verifier for the specific software versions required.

The following MathWorks tools are required to use FIL or FPGA Turnkey.

Workflow Required Tools

FPGA-in-the-loop • HDL Verifier
• Fixed-Point Designer™

FPGA Turnkey • HDL Coder
• Simulink
• Fixed-Point Designer

General Hardware Requirements

To use an FPGA development board, make sure that you have the following FPGA
resources:
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• Clock: An external clock connected to the FPGA is required. The clock can be
differential or single-ended. The accepted clock frequency is from 5 MHz to 300 MHz.
When used with FIL, there are additional requirements to the clock frequency (see
“Ethernet Connection Requirements for FPGA-in-the-Loop” on page 17-4).

• Reset: An external reset signal connected to the FPGA is optional. When supplied,
this signal functions as the global reset to the FPGA design.

• JTAG download cable: A JTAG download cable that connects host computer
and FPGA board is required for the FPGA programming. The FPGA must be
programmable using Xilinx iMPACT or Altera Quartus II.

Ethernet Connection Requirements for FPGA-in-the-Loop

• “Supported Ethernet PHY Device” on page 17-4
• “Ethernet PHY Interface” on page 17-5
• “Special Timing Considerations for RGMII” on page 17-5
• “Special Clock Frequency Requirement for GMII/RGMII/SGMII Interface” on page

17-5

Supported Ethernet PHY Device

On the FPGA board, the Ethernet MAC is implemented in FPGA. An Ethernet PHY chip
is required to be on the FPGA board to connect the physical medium to the Media ACcess
(MAC) layer in the FPGA.

Note: When programming the FPGA, HDL Verifier assumes that there is only
one download cable connected to the Host computer. It also assumes that the
FPGA programming software automatically recognizes the cable. If not, use FPGA
programming software to program your FPGA with the correct options.

The FIL feature is tested with the following Ethernet PHY chips and may not work with
other Ethernet PHY devices.

Ethernet PHY Chip Test

Marvell® Alaska 88E1111 For GMII, RGMII, SGMII, and 100 Base-T
MII interfaces

National Semiconductor DP83848C For 100 Base-T MII interface only
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Ethernet PHY Interface

The Ethernet PHY chip must be connected to the FPGA using one of the following
interfaces:

Interface Note

Gigabit Media Independent Interface (GMII) Only 1000 Mbits/s speed is supported
using this interface.

Reduced Gigabit Media Independent
Interface (RGMII)

Only 1000 Mbits/s speed is supported
using this interface.

Serial Gigabit Media Independent Interface
(SGMII)

Only 1000 Mbits/s speed is supported
using this interface.

Media Independent Interface (MII) Only 100 Mbits/s speed is supported
using this interface.

Note: For GMII, the TXCLK (clock signal for 10/100 Mbits signal) signal is not required
because only 1000 Mbits/s speed is supported.

In addition to the standard GMII/RGMII/SGMII/MII interface signals, FPGA-in-the-loop
also requires an Ethernet PHY chip reset signal (ETH_RESET_n). This active-low reset
signal performs the PHY hardware reset by FPGA. It is active-low.

Special Timing Considerations for RGMII

When the RGMII interface is used, the MAC on the FPGA assumes that the data
are aligned with the edges of reference clock as specified in the original RGMII v1.3
standard. In this case, PC board designs provide additional trace delay for clock signals.

The RGMII v2.0 standard allows the transmitter to integrate this delay so that PC board
delay is not required. Marvell Alaska 88E1111 has internal registers to add internal
delays to RX and TX clocks. The internal delays are not added by default, which means
that you must use the MDIO module to configure Marvell 88E1111 to add internal
delays. For more information on the MDIO module, see “FIL I/O” on page 17-30.

Special Clock Frequency Requirement for GMII/RGMII/SGMII Interface

When GMII/RGMII/SGMII interfaces are used, the FPGA requires an exact 125 MHz
clock to drive the 1000 Mbits/s communication. This clock is derived from the user
supplied external clock using the clock module or PLL.
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Not all external clock frequencies can derive an exact 125 MHz clock frequency.
The acceptable clock frequencies vary depending on the FPGA device family. The
recommended clock frequencies are 50, 100, 125, and 200 MHz.

JTAG Connection Requirements for FPGA-in-the-Loop

Vendor Supported Devices Required
Hardware

Required Software

Altera The FPGA board
must be using an
FPGA device in the
supported Altera
FPGA families.

• USB Blaster
I or USB
Blaster II
download
cable

• USB Blaster I or II driver
• For Windows operating systems:

Quartus Prime executable directory
must be on system path.

• For Linux operating systems:
versions below Quartus II 13.1
are not supported. Quartus
II 14.1 is not supported. Only
64-bit Quartus is supported.
Quartus library directory must
be on LD_LIBRARY_PATH before
starting MATLAB. Prepend the
Linux distribution library path
before the Quartus library on
LD_LIBRARY_PATH. For example,
/lib/x86_64-linux-gnu:

$QUARTUS_PATH.
Xilinx The board must

be using one of the
following supported
Xilinx FPGAs:
Artix®-7, Virtex-7,
Kintex-7 or Zynq®

7000.

• Digilent
download
cable. If your
board has
a standard
Xilinx 14
pin JTAG
connector, you
can obtain
the HS2 cable
from Digilent.

• For Windows operating systems:
Xilinx Vivado executable directory
must be on system path.

• For Linux operating systems:
Digilent Adept2
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Create Custom FPGA Board Definition

1 Be ready with the following:

a Board specification document. Any format you are comfortable with is fine.
However, if you have it in an electronic version, you can search for the
information as it is required.

b If you plan to validate (test) your board definition file, set up FPGA design
software tools:

For validation, you must have Xilinx or Altera on your path. Use the
hdlsetuptoolpath (HDL Coder) function to configure the tool for use with
MATLAB.

2 Open the FPGA Board Manager by typing fpgaBoardManager in the MATLAB
command window. Alternatively, if you are using the HDL Workflow Advisor, you
can click Launch Board Manager at Step 1.1.

3 Open the New FPGA Board wizard by clicking Create New Board. For a
description of all the tasks you can perform with the FPGA Board Manager, see
“FPGA Board Manager” on page 17-21.

4 The wizard guides you through entering all board information. At each page, fill in
the required fields. For assistance in entering board information, see “New FPGA
Board Wizard” on page 17-25.

5 Save the board definition file. This step is the last and is automatically instigated
when you click Finish in the New FPGA Board wizard. See “Save Board Definition
File” on page 17-17.

Your custom board definition now appears in the list of available FPGA Boards in the
FPGA Board Manager. If you are using HDL Workflow Advisor, it also shows in the
Target platform list.

Follow the example “Create Xilinx KC705 Evaluation Board Definition File” on page
17-8 for a demonstration of adding a custom FPGA board with the New FPGA Board
Manager.
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Create Xilinx KC705 Evaluation Board Definition File

In this section...

“Overview” on page 17-8
“What You Need to Know Before Starting” on page 17-8
“Start New FPGA Board Wizard” on page 17-9
“Provide Basic Board Information” on page 17-10
“Specify FPGA Interface Information” on page 17-12
“Enter FPGA Pin Numbers” on page 17-13
“Run Optional Validation Tests” on page 17-15
“Save Board Definition File” on page 17-17
“Use New FPGA Board” on page 17-18

Overview

For FPGA-in-the-loop, you can use your own qualified FPGA board, even if it is not in
the pre-registered FPGA board list supplied by MathWorks. Using the New FPGA Board
wizard, you can create a board definition file that describes your custom FPGA board.

In this example, you can follow the workflow of creating a board definition file for the
Xilinx KC705 evaluation board to use with FIL simulation.

What You Need to Know Before Starting

• Check the board specification so that you have the following information ready:

• FPGA interface to the Ethernet PHY chip
• Clock pins names and numbers
• Reset pins names and numbers

In this example, the required information is supplied to you. In general, you can find
this type of information in the board specification file. This example uses the KC705
Evaluation Board for the Kintex-7 FPGA User Guide, published by Xilinx.

• For validation, you must have Xilinx or Altera on your path. Use the
hdlsetuptoolpath (HDL Coder) function to configure the tool for use with
MATLAB.
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 Create Xilinx KC705 Evaluation Board Definition File

• To verify programming the FPGA board after you add its definition file, attach the
custom board to your computer. However, having the board connected is not necessary
for creating the board definition file.

Start New FPGA Board Wizard

1 Start the FPGA Board Manager by entering the following command at the MATLAB
prompt:

>>fpgaBoardManager

2 Click Create Custom Board to open the New FPGA Board wizard.
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Provide Basic Board Information

1 In the Basic Information pane, enter the following information:
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• Board Name: Enter "My Xilinx KC705 Board"
• Vendor: Select Xilinx
• Family: Select Kintex7
• Device: Select xc7k325t
• Package: Select ffg900
• Speed: Select -2
• JTAG Chain Position: Select 1

The information you just entered can be found in the KC705 Evaluation Board for
the Kintex-7 FPGA User Guide.
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2 Click Next.

Specify FPGA Interface Information

1 In the Interfaces pane, perform the following tasks.

a Select FIL Interface. This option is required for using your board with FPGA-
in-the-loop.

b Select GMII in the PHY Interface Type. This option indicates that the onboard
FPGA is connected to the Ethernet PHY chip via a GMII interface.

c Leave the User-defined I/O option in the FPGA Turnkey Interface section
cleared. FPGA Turnkey workflow is not the focus of this example.

d Clock Frequency: Enter 200. This Xilinx KC705 board has multiple clock
sources. The 200 MHz clock is one of the recommended clock frequencies for use
with Ethernet interface (50, 100, 125, and 200 MHz).

e Clock Type: Select Differential.
f Clock_P Pin Number: Enter AD12.
g Clock_N Pin Number: Enter AD11.
h Clock IO Standard — Leave blank.
i Reset Pin Number: Enter AB7. This value supplies a global reset to the FPGA.
j Active Level: Select Active-High.
k Reset IO Standard — Leave blank.

You can obtain all necessary information from the board design specification.
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2 Click Next.

Enter FPGA Pin Numbers

1 In the FILI/O pane, enter the numbers for each FPGA pin. This information is
required.

Pin numbers for RXD and TXD signals are entered from the least significant digit
(LSD) to the most significant digit (MSB), separated by a comma.
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For signal name... Enter FPGA pin number...

ETH_COL W19
ETH_CRS R30
ETH_GTXCLK K30
ETH_MDC R23
ETH_MDIO J21
ETH_RESET_n L20
ETH_RXCLK U27
ETH_RXD U30,U25,T25,U28,R19,T27,T26,T28
ETH_RXDV R28
ETH_RXER V26
ETH_TXD N27,N25,M29,L28,J26,K26,L30,J28
ETH_TXEN M27
ETH_TXER N29

2 Click Advanced Options to expand the section.
3 Check the Generate MDIO module to override PHY settings option.

This option is selected for the following reasons:

• There are jumpers on the Xilinx KC705 board that configure the Ethernet PHY
device to MII, GMII, RGMII, or SGMII mode. Since this example uses the GMII
interfaces, the FPGA board does not work if the PHY devices are set to the wrong
mode. When the Generate MDIO module to override PHY settings option
is selected, the FPGA uses the Management Data Input/Output (MDIO) bus to
override the jumper settings and configure the PHY chip to the correct GMII
mode.

• This option currently only applies to Marvell Alaska PHY device 88E1111 and
this KC705 board is using the Marvel device.

4 PHY address (0 – 31): Enter 7.
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5 Click Next.

Run Optional Validation Tests

This step provides a validation test for you to verify if the entered information is correct
by performing FPGA-in-the-loop cosimulation. You need Xilinx ISE 13.4 or higher
versions installed on the same computer. This step is optional and you can skip it, if you
prefer.

Note: For validation, you must have Xilinx or Altera on your path. Use the
hdlsetuptoolpath (HDL Coder) function to configure the tool for use with MATLAB.
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To run this test, perform the following actions.

1 Check the Run FPGA-in-the-Loop test option.
2 If you have the board attached, check the Include FPGA board in the test option.

You need to supply the IP address of the FPGA Board. This example assumes that
the Xilinx KC705 board is attached to your host computer and it has an IP address of
192.168.0.2.

3 Click Run Selected Test(s). The tests take about 10 minutes to complete.
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Save Board Definition File

1 Click Finish to exit the New FPGA Board wizard. A Save As dialog box pops up and
asks for the location of the FPGA board definition file. For this example, save as C:
\boardfiles\KC705.xml.

2 Click Save to save the file and exit.
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Use New FPGA Board

1 After you save the board definition file, you are returned to the FPGA Board
Manager. In the FPGA Board List, you can now see the new board you defined.

Click OK to close the FPGA Board Manager.
2 You can view the new board in the board list from either the FIL wizard or the HDL

Workflow Advisor.

a Start the FIL wizard from the MATLAB prompt.

>>filWizard

The Xilinx KC705 board appears in the board list and you can select it for
FPGA-in-the-loop simulation.
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b Start HDL Workflow Advisor.

In step 1.1, select FPGA-in-the-Loop and click Launch Board Manager.

The Xilinx KC705 board appears in the board list and you can select it for
FPGA-in-the-loop simulation.
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FPGA Board Manager

In this section...

“Introduction” on page 17-21
“Filter” on page 17-23
“Search” on page 17-23
“FIL Enabled/Turnkey Enabled” on page 17-23
“Create Custom Board” on page 17-23
“Add Board from File” on page 17-23
“Get More Boards” on page 17-23
“View/Edit” on page 17-24
“Remove” on page 17-24
“Clone” on page 17-24
“Validate” on page 17-24

Introduction

The FPGA Board Manager is the portal to managing custom FPGA boards. You can
create a board definition file or edit an existing one. You can even import a custom board
from an existing board definition file.

You start the FPGA Board Manager by one of the following methods:

• By typing fpgaBoardManager in the MATLAB command window
• From the FIL wizard by clicking Launch Board Manager on the first page
• From the HDL Workflow Advisor (when using HDL Coder) at Step 1.1
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Filter

Choose one of the following views:

• All boards
• Only those boards that were preinstalled with HDL Verifier or HDL Coder
• Only custom boards

Search

Find a specific board in the list or those boards that fully or partially match your search
string.

FIL Enabled/Turnkey Enabled

These columns indicate whether the specified board is supported for FIL or Turnkey
operations.

Create Custom Board

Start New FPGA Board wizard. See “New FPGA Board Wizard” on page 17-25. You
can find the process for creating a board definition file in “Create Custom FPGA Board
Definition” on page 17-7.

Add Board from File

Import a board definition file (.xml).

Get More Boards

Download FPGA board support packages for use with FIL

1 Click Get more boards.
2 Follow the prompts in the Support Package Installer to download an FPGA board

support package.
3 When the download is complete, you can see the new boards in the board list in the

FPGA Board Manager.
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Offline Support Package Installation You can install an FPGA board support package
without an internet connection. See “Install Support Package Offline” on page 12-5.

View/Edit

View board configurations and modify the information. You can view a read-only file but
not edit it. See “FPGA Board Editor” on page 17-38.

Remove

Remove custom board from the list. This action does not delete the board definition XML
file.

Clone

Makes a copy of an existing custom board for further modification.

Validate

Runs the validation tests for FIL See “Run Optional Validation Tests” on page 17-15.
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New FPGA Board Wizard

Using the New FPGA Board wizard, you can enter all the required information to add
a board to the FPGA board list. This list applies to both FIL and Turnkey workflows.
Review “FPGA Board Requirements” on page 17-3 before adding an FPGA board to make
sure that it is compatible with the workflow for which you want to use it.

Several buttons in the New FPGA Board wizard help with navigation:

• Back: Go to a previous page to review or edit data already entered.
• Next: Go to next page when all requirements of current page have been satisfied.
• Help: Open Doc Center, and display this topic.
• Cancel: Exit New FPGA Board wizard. You can exit with or without saving the

information from your session.

Adding Boards Once for Multiple Users To add new boards globally, follow these
instructions. To access a board added globally, all users must be using the same
MATLAB installation.

1 Create the following folder:

matlabroot/toolbox/shared/eda/board/boardfiles

2 Copy the board description XML file to the boardfiles folder.
3 After copying the XML file, restart MATLAB. The new board appears in the FPGA

board list for either or both the FIL and Turnkey workflows.

All boards under this folder show-up in the FPGA board list automatically for users with
the same MATLAB installation. You do not need to use FPGA Board Manager to add
these boards again.

The workflow for adding an FPGA board contains these steps:

In this section...

“Basic Information” on page 17-26
“Interfaces” on page 17-27
“FIL I/O” on page 17-30
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In this section...

“Turnkey I/O” on page 17-33
“Validation” on page 17-36
“Finish” on page 17-37

Basic Information

Board Name: Enter a unique board name.

Device Information:

• Vendor: Xilinx or Altera
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• Family: Family depends on the specified vendor. See the board specification file for
applicable settings.

• Device: Use the board specification file to select the correct device.
• For Xilinx boards only:

• Package: Use the board specification file to select the correct package.
• Speed: Use the board specification file to select the correct speed.
• JTAG Chain Position: Value indicates the starting position for JTAG chain.

Consult the board specification file for this information.

Interfaces

• “FIL Interface for Altera Boards” on page 17-27
• “FIL Interface for Xilinx Boards” on page 17-28
• “FPGA Turnkey Interface” on page 17-29
• “FPGA Input Clock and Reset” on page 17-29

FIL Interface for Altera Boards
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1 FPGA-in-the-Loop: To use this board with FIL, select FIL Interface.
2 Select one of the following PHY Interface types:

• Gigabit Ethernet — GMII
• Gigabit Ethernet — RGMII
• Gigabit Ethernet — SGMII (the SGMII option appears if you select a board

from the Stratix V or Stratix IV device families)
• Ethernet — MII
• Altera JTAG (Altera boards only)

Note: Not all interfaces are available for all boards. Availability depends on the
board you selected in Basic Information.

FIL Interface for Xilinx Boards

1 FPGA-in-the-Loop Interface: To use this board with FIL, select FIL Interface.
2 Select one of the following PHY Interface types:
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• JTAG (via Digilent cable) (Xilinx boards only)
• Ethernet — RMII

Note: Not all interfaces are available for all boards. Availability depends on the
board you selected in Basic Information.

For more information on how to set up the JTAG connection for Xilinx boards, see “JTAG
with Digilent Cable Setup” on page 17-40.

Limitations

When you simulate your FPGA design through a Digilent JTAG cable, you cannot use
any other debugging feature that requires access to the JTAG; for example, the Vivado
Logic Analyzer.

FPGA Turnkey Interface

FPGA Turnkey Interface: If you want to use with board with the HDL Coder FPGA
Turnkey workflow, select User-defined I/O.

FPGA Input Clock and Reset
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1 FPGA Input Clock — Clock details are required for both workflows. You can find
all necessary information in the board specification file.

• Clock Frequency — Must be from 5 through 300. For an Ethernet interface, the
suggested clock frequencies are 50, 100, 125, and 200 MHz.

• Clock Type — Single_Ended or Differential.
• Clock Pin Number  (Single_Ended) — Must be specified. Example: N10.
• Clock_P Pin Number  (Differential) — Must be specified. Example: E19.
• Clock_N Pin Number  (Differential) — Must be specified. Example: E18.
• Clock IO Standard — The programmable I/O Standard to use to configure

input, output, or bi-directional ports. For example, LVDS.
2 Reset (Optional) — If you want to indicate a reset, find the pin number and active

level in the board specification file, and enter that information.

• Reset Pin Number — Leave empty if you do not have one.
• Active Level — Active-Low or Active-High.
• Reset IO Standard — The programmable I/O Standard to use to configure

input, output, or bi-directional ports. For example, LVCMOS33.

FIL I/O

When you select an Ethernet connection to your board, you must specify pins for the
Ethernet signals on the FPGA.
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Signal List: Provide all the FPGA pin numbers for the specified signals. You can find
this information in the board specification file. For vector signals, list all pin numbers on
the same line, separated by commas.

Note: If your PHY chip does not have the optional TX_ER pin, tie ETH_TXER to one of
the unused pins on the FPGA.

Generate MDIO module to override PHY settings: See the next section on FPGA
Board Management Data Input/Output Bus (MDIO) to determine when to use this
feature. If you do select this option, enter the PHY address.
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What Is the Management Data Input/Output Bus?

Management Data Input/Output (MDIO) is a serial bus, defined in the IEEE® 802.3
standard, that connects MAC devices and Ethernet PHY devices. The FPGA MAC uses
the MDIO bus to set control registers in the Ethernet PHY device on the board.

Currently only the Marvell 88E1111 PHY chip is supported by this MDIO module
implementation. Do not select this check box if you are not using Marvell 88E1111.

The generated MDIO module is used to perform the following operations:

• GMII mode: The PHY device can start up using other modes, such as RGMII/SGMII.
The generated MDIO module sets the PHY chip in GMII mode.

• RGMII mode: The PHY device can start up using other modes, such as GMII/SGMII.
The generated MDIO module sets the PHY device in RGMII mode. In addition, the
module sets the PHY chip to add internal delay for RX and TX clocks.

• SGMII mode: The PHY device can start up using other modes, such as RGMII/GMII.
The generated MDIO module sets the PHY chip in SGMII mode.

• MII mode: The generated MDIO module sets the PHY device in GMII compatible
mode. The module also sets the autonegotiation register to remove the 1000 Base-T
capability advertisement. This reset ensures that the autonegotiation process does not
select 1000 Mbits/s speed, which is not supported in MII mode.

When To Select MDIO: Select the Generate MDIO module to override PHY
settings option when both the following conditions are met:

• The onboard Ethernet PHY device is Marvell 88E1111.
• The PHY device startup settings are not compatible with the FPGA MAC. The

MDIO modules for different PHY modes must override these settings, as previously
described.

Specifying the PHY Address: The PHY address is a 5-bit integer. The value is
determined by the CONFIG[0] and CONFIG[1] pin on Marvell 88E1111 PHY device. See
the board manual for this value.
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Turnkey I/O

Note: Provide FIL I/O for an Ethernet connection only. Define at least one output port for
the Turnkey I/O interface.

Signal List: Provide all the FPGA pin numbers for the specified signals. You can find
this information in the board specification file. For vector signals, list all pin numbers
on the same line, separated by commas. The number of pin numbers must match the bit
width of the corresponding signal.

Add New: You are prompted to enter all entries in the signal list manually.
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Add Using Template: The wizard prepopulates a new signal entry for UART, LED,
GPIO, or DIP Switch signals with the following:

• A generic signal name
• Description
• Direction
• Bit width

You can change the values in any of these prepopulated fields.

Delete: Delete the selected signal from list.

The following example demonstrates using the Add Using Template feature.

1 In the Turnkey I/O dialog box, click Add Using Template.
2 You can now view the template dialog box.

3 Pull down the I/O list and select from the following options:

4 Click OK.
5 The wizard adds the specified signal (or signals) to the I/O list.
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Validation

FPGA-in-the-Loop Test

• Run FPGA-in-the-Loop test: Select to generate an FPGA programming file.

• Include FPGA board in the test: (Optional) This selection program the FPGA
with the generated programming file, detects the Ethernet connection (if selected),
and performs FPGA-in-the-loop simulation.

• Board IP address: (Ethernet connection only) Use this option for setting the
board IP address if it is not the default IP address (192.168.0.2).

If necessary, change the computer IP address to a different subnet from
192.168.0.x when you set up the network adapter. If the default board IP address
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192.168.0.2 is in use by another device, change the Board IP address according to
the following guidelines:

• The subnet address, typically the first 3 bytes of board IP address, must be the
same as the host IP address.

• The last byte of the board IP address must be different from the host IP
address.

• The board IP address must not conflict with the IP addresses of other
computers.

For example, if the host IP address is 192.168.8.2, then you can use
192.168.8.3, if available.

FPGA Turnkey Test

• Run FPGA Turnkey test: Select to generate an FPGA programming file using an
HDL design that contains a counter. You must have a board attached.

• Select output LED: The counter’s output is connected with the LED you select. Skip
this test if you do not have an LED output.

Finish

When you have completed validation, click Finish. See “Save Board Definition File” on
page 17-17.
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FPGA Board Editor

To edit a board definition XML file, first make it writeable. If the file is read-only, the
FPGA Board Editor only lets you view the board configuration information. You cannot
modify that information.

In this section...

“General Tab” on page 17-38
“Interface Tab” on page 17-40

General Tab
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Board Name: Unique board name

Device Information:

• Vendor: Xilinx or Altera
• Family: Family depends on the specified vendor. See the board specification file for

applicable settings.
• Device: Device depends on the specified vendor and family. See the board

specification file for applicable settings.
• For Xilinx boards only:

• Package: Package depends on specified vendor, family, and device. See the board
specification file for applicable settings.

• Speed: Speed depends on package. See the board specification file for applicable
settings.

• JTAG Chain Position: Value indicates the starting position for JTAG chain.
Consult the board specification file for this information.

• FPGA Input Clock. Clock details are required for both the FIL and Turnkey
workflows. You can find all necessary information in the board specification file.

• Clock Frequency. Must be from 5 through 300. For an Ethernet interface, the
suggested clock frequencies are 50, 100, 125, and 200 MHz.

• Clock Type: Single_Ended or Differential.
• Clock Pin Number  (Single_Ended) — Must be specified. Example: N10.
• Clock_P Pin Number  (Differential) — Must be specified. Example: E19.
• Clock_N Pin Number  (Differential) — Must be specified. Example: E18.
• Clock IO Standard — The programmable I/O Standard to use to configure input,

output, or bi-directional ports. For example, LVDS.
• Reset (Optional). If you want to indicate a reset, find the pin number and active

level in the board specification file, and enter that information.

• Reset Pin Number. Leave empty if you do not have one.
• Active Level : Active-Low or Active-High.
• Reset IO Standard — The programmable I/O Standard to use to configure input,

output, or bi-directional ports. For example, LVCMOS33.
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Interface Tab

The Interface page describes the supported FPGA I/O Interfaces. Select any listed
interface and click View to see the Signal List. If the board definition file has write
permission, you can also Add New interface, Edit the interface, or Remove an
interface.

JTAG with Digilent Cable Setup

Note: Enter information for the JTAG cable setup carefully. If the settings are incorrect,
the simulation errors out and does not work. If you are still unsure about how to setup
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your JTAG cable after reading these instructions, contact MathWorks technical support
with detailed information about your board.

1 Signal/Parameter List — Provide the sum of the lengths of the instruction
registers (IR) for all devices before and after the FPGA in the chain.

• If the FPGA is the only item in the device chain, use zeros in both Sum of IR
length before and Sum of IR length after.

• If you are using a Zynq device, and it is the only item in the device chain, enter 4
in Sum of IR length before and 0 in Sum of IR length after.

If your board does not meet either of those conditions, follow these instructions to
obtain the IR lengths:
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a Connect the FPGA board to your computer using the JTAG cable. Turn on the
board.

b Make sure that you installed the cable drivers during Vivado installation.
c Open Vivado Hardware Manager and select Open a new hardware target. In

the dialog box is a summary of the IR lengths for all devices for that target.
d Sum the IR lengths before the FPGA and enter the total in Sum of IR length

before. Sum the IR lengths after the FPGA and enter the total in Sum of IR
length after.

Vivado Hardware Manager cannot recognize the IR length of less common devices.
For these devices, consult the device manual for instruction register length.

2 Advanced Options — If the default values are not the same as the most common
settings for many devices, set the User1 Instruction and JTAG Clock Frequency
(MHz) parameters. The most common settings are 000010 and 66, respectively.

• User1 Instruction — The JTAG USER1 Instruction defined in the Xilinx
Bscane2 primitive. This binary instruction number, defined by Xilinx, varies from
device to device. For most of the 7-series devices, this instruction is 000010. If
your device has a different value, enter it in this parameter.

To find this value, look at the bsd file for your specific device, found in your
Vivado installation. For example, for the XA7A32T-CPG236 device, the bsd file is
located in Vivado\2014.2\data\parts\xilinx\artix7\aartix7\xa7a35t
\cpg236.

Open this file. The USER1 value is 000010. Enter this value at User1
Instruction.

  "USER1  (000010),"

• JTAG Clock Frequency (MHz) — Clock frequency used by the JTAG circuit.
This value varies by device. You can find this value in the same bsd file described
under User1 Instruction. For example, the JTAG clock frequency is 66 MHz for
device XA7A32T-CPG236:

attribute TAP_SCAN_CLOCK of TCK : signal is (66.0e6, BOTH);
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18 How TLM Component Generation Works

TLM Generation Algorithms

The algorithm you use to generate the TLM component can be made of any combination
of Simulink blocks that can generate C code. These blocks generally belong to a
subsystem. Simulink Coder™ software generates ANSI® C code from those blocks
that HDL Verifier software then customizes with the settings specified using the TLM
component generator to create the files that make up the virtual platform model. For an
example of how this process works, see the following illustration.
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The TLM Generation Process

After you obtain the TLM component files generated by HDL Verifier software, you can
compile the TLM component and the optional test bench with OSCI SystemC libraries
and the OSCI TLM libraries. To do so, use the makefile supplied by HDL Verifier to
create your virtual platform executable (e.g., mysimulation.exe).

The following diagram illustrates the complete set of articles you can generate including
the TLM component, the TLM component test bench, and the set of test vectors to be
executed by the test bench. Simulink generates these vectors while performing model
execution when you verify the TLM component from within Simulink (see “Run TLM
Component Test Bench” on page 22-5).

The following general workflow describes the process for creating an OCSI-compatible
TLM component representing the Simulink algorithm:
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1 Create Simulink model representing algorithm.
2 Select required architectural model (i.e., virtual platform model) parameters via

the Simulink Configuration Parameters dialog box. See “Subsystem Guidelines and
Limitations” on page 21-3.

3 (Optional) If you want, restore any desired configuration sets at this time. Because
the topic of configuration sets is outside the scope of this workflow description, refer
to the section "Overview of Model Referencing" in the Simulink documentation.

4 Initiate code generation.
5 Save configuration options with model for future use.
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Generated TLM Files

HDL Verifier software generates the following files:

• C/C++ code containing the Simulink model behavior (.cpp and .h files)
• Virtual platform TLM component class (.cpp and .h files)
• TLM component documentation (HTML)
• TLM component test bench (if specified) (.cpp and .h files)
• Test bench stimulus and expected response vectors (MATLAB formatted data)
• Makefiles for building the TLM component and standalone test bench (makefile

format)
• IP-XACT XML file. For details, see “Contents of Generated IP-XACT File” on page

21-27.
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After code generation is complete, you can then use these generated files (outputs) to
create the standalone TLM executable. See “Export TLM Component” on page 23-2.
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TLM Component Architecture

In this section...

“Overview of Component Features” on page 19-2
“Memory Mapping” on page 19-4
“Command and Status Register” on page 19-9
“Interrupt” on page 19-16
“Test and Set Register” on page 19-16
“Register and Buffering” on page 19-17
“Temporal Decoupling” on page 19-19

Overview of Component Features

The TLM generator exports a target TLM component from a Simulink model subsystem.
The target TLM component has a single TLM socket that supports read and write
transactions using the TLM generic protocol and generic payload.

The following diagram illustrates the simplest behavior you can specify for the generated
TLM component. It contains no memory map or command and status register and
executes transactions immediately.
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There are a number of options you can use to control the architecture of the generated
TLM component. Incorporating a memory map is one of the most effective options. The
following figure demonstrates the behavior of a generated TLM component with a full
complement of features enabled.

You can set options for the following TLM component features:

• “Memory Mapping” on page 19-4
• “Command and Status Register” on page 19-9
• “Interrupt” on page 19-16
• “Test and Set Register” on page 19-16
• “Register and Buffering” on page 19-17
• Interface Timing — Model time used by transactions in a real system.
• Algorithm Execution — Implement the component as a SystemC thread or a callback

function.
• “Temporal Decoupling” on page 19-19
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Memory Mapping

• “No Memory Map” on page 19-4
• “Automatically Generated Memory Map with Single Address” on page 19-5
• “Automatically Generated Memory Map with Individual Addresses” on page 19-7

No Memory Map

The no memory map option generates a TLM component with only one read and one
write register without any address. The Simulink model inputs are represented by the
write register and the outputs are represented by the read register.

Without a memory map, the generated TLM component has the following characteristics:
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• Has a single input register and a single output register.
• Does not need—and ignores—an address in the read and write requests during

SystemC simulation to select specific registers on the device.

• Receives all input data in a single write request, and a read request receives all
output data in the return value

• Has input and output registers either sized to hold an entire data set required
or created by the TLM component when it executes the behavior (algorithm step
function) in your virtual platform environment

• When input registers are full, this condition triggers (schedules) execution of the
behavior in the SystemC simulator. Output registers are handled the same way.

• All defaults for commands and status are applied.

When you generate the TLM component with this option, you can use it in a virtual
platform (VP) as:

• A standalone component in a verification test bench
• A direct bound co-processing unit
• A device attached to a communication channel using a protocol adapter

Automatically Generated Memory Map with Single Address

The automatically generated memory map with single address option generates a TLM
component with only one read data register and one write data register with one address
each.
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The Simulink model inputs are represented by the write register, and the outputs are
represented by the read register. HDL Verifier software automatically assigns the
addresses required to access those specific registers during code generation. Those
addresses give the specific offsets required to address each individual register via read
and write operations. Definition of the base address for the entire generated TLM
component should be defined by the virtual platform that the TLM component resides in.
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The offset address definitions appear in a definition file that is generated along with the
TLM component.

With a single address memory map, the generated TLM component has the following
characteristics:

• Has a single input register and a single output register, and optional command and
status register and test and set register.

• Must have an address in the read and write requests during SystemC simulation to
select specific registers on the device.

• Receives all input data in a single write request, and a read request receives all
output data in the return value

• Has input and output registers either sized to hold an entire data set required
or created by the TLM component when it executes the behavior (algorithm step
function) in your virtual platform environment

• If a command and status register is not used or if the command and status register
is used and the default values apply, when input register is full, content is pushed
into buffer, which then triggers (schedules) execution of the behavior in the SystemC
simulator. If the command and status register is used and the Push Input Command
is set to 1, the initiator module moves the input data set from the input register to the
input buffer. Output registers are handled the same way.

• If a command and status register is not used, all defaults for commands and status
are applied.

When you generate the TLM component with this option, you can use it in a virtual
platform (VP) as a standalone component in a test bench, or you can attach it to a
communication channel.

Automatically Generated Memory Map with Individual Addresses

The automatically generated memory map with individual address option generates a
TLM component with one read data register per model output and write data register per
model input with individual addresses.
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Each Simulink model input is represented by its corresponding write register, and
each output is represented by its corresponding read register. HDL Verifier software
automatically assigns the addresses required to access those specific registers during
code generation. Those addresses give the specific offsets required to address each
individual register via read and write operations. Definition of the base address for the
entire generated TLM component should be defined by the virtual platform that the TLM
component resides in. The offset address definitions appear in a definition file that is
generated along with the TLM component.

With an individual address memory map, the generated TLM component has the
following characteristics:

• Each input register and each output register has its own address as well as an
optional command and status register and test and set register.

• Must have an address in the read and write requests during SystemC simulation to
select specific registers on the device.

• Each input and output register must be accessed individually.
• Initiator module can write or read each input and output register in multiple and/or

partial transactions.
• The size of each input and output register is the size of the data.
• Execution is triggered when all input has been written or when command and set

register bits are set to Automatic. If set to manual, the initiator module moves the
input data set from the input register to the input buffer.

• Output registers are refreshed when all output registers have been read or when
command and set registers bits are set to Automatic. If set to manual, the initiator
module moves the output data set from the output buffer to the output register.

When you generate the TLM component with this option, you can use it in a virtual
platform (VP) as a standalone component in a test bench, or you can attach it to a
communication channel.

Command and Status Register

You can choose to generate a TLM component with an automatically generated memory
map with addresses. When you do so, the TLM generator offers you the option to
incorporate a Command and Status register (CSR) in the generated TLM component. The
definition for this register appears in the table.
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Write-Only Bits

Write-only (WO) bits assert mutually exclusive commands. You can assert only one
command bit in any single write operation to the CSR. If more than one command bit is
set in the write to the CSR, the command is undefined. You activate each command by
writing a 1 to a command bit in the register. Then, each command bit is automatically
cleared after the command has been executed. You do not have to write a 0 to the register
to clear a command bit. Write-Only bits are always returned as 0 in any read of the CSR.
Writing a command does not overwrite the Read/Write or Write-Only bits.

Read-and-Write Bits

Use Read and Write (R/W) bits to obtain the current status and setting. R/W bit are
sticky, meaning that after you set them by writing a 1 to the bit in the register, an R/
W bit remains set until a 0 is written to the same bit or the Reset command is invoked.
Read-and-Write bits return their actual values to any read of the CSR.

A single write operation to the CSR sets all Read-and-Write bits in the register. You can
choose to set only some of the bits and maintain the previous values of others. Before
you do so, you must first read the CSR and then modify the values according to your
requirements. After you complete modifications, you can write the entire 32 bits back to
the CSR.

Read-Only Bits

Read-Only (RO) bits provide status information. The generated TLM component
automatically sets and clears their values, and an initiator module can read them to
learn status. Read-Only bits do not change their actual values during any read or write of
the CSR.

Register Definition

The following table contains the entire register definition.
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The following table explains how the bits are defined.

Bit Name Read/Write Status Description

CSR<0> Reset
Command

Write Only When set to 1, the following are true:

• Input register contents are made
invalid

• Output register contents are made
invalid

• All CSR bits are set to 0 except the
following:

• Input Buffer Empty bit is set to 1
• Output Buffer Empty bit is set to

1
• Input Auto Mode is set to default
• Output Auto Mode is set to

default
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Bit Name Read/Write Status Description

Automatically returns to 0 after
command execution.

CSR<1> Start
Command

Write Only Manually triggers execution of the
TLM component behavior using the
input data set that is currently in the
input register when there is no input
buffering.

When input buffering is used, this
command is undefined.

CSR<2> Interrupt
Status

Read Only Reflects the current state of the
Interrupt signal. Provides status only;
sets and clears itself automatically.

CSR<3> Interrupt
Disable

Read and Write When set to 0 allows interrupts to be
generated on the Interrupt signal and
reflected in the Interrupt Status bit of
the CSR.

When set to 1 disables generation of
interrupts.

CSR<8> Push Input
Command

Write Only When buffering is used and the Input
Mode is equal to 0 (manual mode), this
command allows an initiator module
to move the input data set from the
input register to the input buffer. It
then triggers execution of the TLM
component behavior.

When buffering is not used, this
command is undefined.

When Input Mode is 1 (automatic), this
command is undefined.
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Bit Name Read/Write Status Description

CSR<9> Input Mode Read and Write When set to 1 (automatic), movement
of the input data set from the input
register to the input buffer and
execution of the TLM component
behavior is triggered automatically if a
complete data set has been written to
the input register.

When set to 0 (manual): movement
of the input data set from the input
register to the input buffer and
execution of the behavior must be
manually initiated. Do so by writing the
Start Command bit to 1, if no buffering
is used, or writing the Push Input
Command to 1, if buffering is present.

By default the Input Mode is set to
1 (automatic). The default may be
changed to 0 (manual) if you specify
it in the TLM component constructor
parameters.

CSR<12> Pull Output
Command

Write Only When buffering is used and the Output
Mode is set to 0 (manual mode), this
command allows an initiator module
to move the output data set from the
head of the output buffer to the output
register.

When buffering is not used, this
command has no effect.

When Output Mode is 1 (automatic),
this command is undefined.
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Bit Name Read/Write Status Description

CSR<13> Output Mode Read and Write When set to 1 (automatic), movement
of data from the head of the output
buffer to the output register is triggered
automatically by the execution of the
TLM component behavior.

When set to 0 (manual), movement of
data from the head of the output buffer
to the output register must be manually
initiated. Do so by writing the Pull
Output Command to 1, if buffering is
present.

By default the Output Mode is set
to 1 (automatic). The default may be
changed to 0 (manual) if you specify
it in the TLM component constructor
parameters.

CSR<16> Input Buffer
Empty

Read Only When set to 1, any TLM component
behavior execution without first
pushing input data to the input buffer,
either automatically or manually,
causes the Input Buffer Underflow
status to be asserted.

This bit is set to 0 by the TLM
component when the buffer is not
empty.

CSR<17> Input Buffer
Full

Read Only When set to 1, any push of input data
to the input buffer, either automatically
or manually, without first executing
the TLM component behavior, causes
the Input Buffer Overflow status to be
asserted.

This bit is set to 0 by the TLM
component when the buffer is not full.
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Bit Name Read/Write Status Description

CSR<18> Input Buffer
Underflow

Read and Write This bit is set to 1 by the TLM
component when an action is taken
to initiate execution of the TLM
component behavior with no data
available in the input buffer.

This bit is sticky and can be cleared
with a write transaction to set it back to
0.

CSR<19> Input Buffer
Overflow

Read and Write This bit is set to 1 by the TLM
component when input data is pushed
to the input buffer, either automatically
or manually, and it is already full.

This bit is sticky and can be cleared
with a write transaction to set it back to
0.

CSR<20> Output
Buffer
Empty

Read Only When set to 1, any pull of output
data from the output buffer, either
automatically or manually, without
first executing the TLM component
behavior, causes the Output Buffer
Underflow status to be asserted.

This bit is set to 0 by the TLM
component when the buffer is not
empty.

CSR<21> Output
Buffer Full

Read Only When set to 1, any TLM component
behavior execution without first pulling
output data to the output registers,
either automatically or manually,
causes the new output data to be lost
and Output Buffer Overflow status to
be asserted.

This bit is set to 0 by the TLM
component when the buffer is full.

19-15



19 TLM Component Architecture

Bit Name Read/Write Status Description

CSR<22> Output
Buffer
Underflow

Read and Write This bit is set to 1 by the TLM
component when an action is taken to
pull data from the output buffer to the
output register, either automatically
or manually, and there is no data
available in the output buffer.

This bit is sticky and can be cleared
with a write transaction to set it back to
0.

CSR<23> Output
Buffer
Overflow

Read and Write This bit is set to 1 by the TLM
component when the TLM component
behavior is executed and the output
buffer is already full, causing the new
output data to be lost.

This bit is sticky and can be cleared
with a write transaction to set it back to
0.

Interrupt

You can choose to have an interrupt signal added to the generated TLM component. The
TLM component will assert this signal whenever new outputs are available in any output
register. The signal is automatically cleared whenever a value is read from any output
register.

The Interrupt signal is an ordinary SystemC boolean signal active high. The Interrupt
Active bit in the Status Register reflects the state of the interrupt signal.

Test and Set Register

HDL Verifier software optionally provides the test and set register as a means of
controlling access to a shared TLM component in your SystemC environment. Any read
of this register returns the current value and sets the register to a new, asserted value
in an atomic operation. In systems where there are multiple initiator modules, executing
this task usually requires access to the same target. If so, then an initiator module has
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exclusive access to the generated TLM component as long as a common lock protocol is
followed by all other initiator modules. The initiator modules must read the test and set
register and use the target device only when that read operation returns a value of zero.
An initiator module can be sure that any subsequent read of the test and set register
returns a value of 1, which indicates to other initiator modules that the device is busy.
After gaining exclusive access to the TLM component, an initiator module must release it
when the target operations complete by writing a zero to the test and set register.

Register and Buffering

• “Introduction” on page 19-17
• “Register” on page 19-17
• “Buffering” on page 19-18

Introduction

The TLM generator allows you to enable or disable input and output data buffering
between the TLM component interface and the algorithm processing. For the cases when
you have selected temporal decoupling, see “Temporal Decoupling” on page 19-19.

Register

When you disable buffering, the TLM Component reads and writes inputs and outputs
directly from the interface register during algorithm processing. Do not allow an initiator
to perform a read or write of the registers during algorithm processing; this action could
corrupt the processing results. After the initiator writes all input registers (if in AUTO
mode) or when the initiator writes the START command in the CSR, the algorithm
begins processing. HDL Verifier generates all timings using a SystemC wait function.

The following image demonstrates a TLM component without buffering.
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Buffering

When you enable buffering, the TLM component queues the inputs and the outputs in
FIFOs between the interface and the algorithm processing. You define the depth of the
FIFOs in the TLM generator GUI. The TLM component pushes the content of the input
registers in the input queue under either of the following conditions:

• After the initiator writes all input registers (if in AUTO mode)
• When the initiator writes the PUSH command in the CSR

The component triggers algorithm processing as soon as there is data in the queue. When
the component completes processing, it pushes the results in the output queue.

The component replaces the content of the output registers with new outputs coming
from the output queue (if any are available) under either of the following conditions:

• After the initiator reads all output registers (if in AUTO mode)
• When the initiator writes the PULL command in the CSR

HDL Verifier generates all timings using a SystemC wait function.

The following image demonstrates a TLM component with buffering.
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Temporal Decoupling

• “Temporal Decoupling Overview” on page 19-19
• “Temporal Decoupling and No Buffering” on page 19-21
• “Temporal Decoupling and Buffering” on page 19-22

Temporal Decoupling Overview

The TLM generator allows you to enable or disable temporal decoupling between the
TLM component interface and the algorithm processing. Temporal decoupling improves
simulation speed by reducing the number of synchronization points and rescheduling
that occur during SystemC simulation. With temporal decoupling, the TLM component
uses a quantum and allows each process to run ahead of the simulation time inside the
boundary of its quantum. This arrangement creates a notion of local time in each thread
that represents the thread advance as compared with the simulation time. Because the
use of temporal decoupling can change the event order and process execution order, the
simulation could lose some accuracy.

The following examples represent a simulation containing three threads:

• An initiator that writes data into the TLM component every 10 ms
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• A TLM component that process the data
• A second initiator that reads the results

The time to write, process, or read the data is 5 ms.

In this first diagram, the simulation does not use temporal decoupling.

Without temporal decoupling, all the threads execute in sequential order and to exchange
the three data the component requires nine context switches.

In this second diagram, the simulation uses temporal decoupling and a quantum of 45
ms.

With temporal decoupling, the TLM component modifies the execution order. To
exchange the three data, the simulation only requires three context switches. It only
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requires three context switches because each thread must reach the end of its quantum
before giving control back to the simulation. Even with temporal decoupling, the events
and data exchanged between each thread happen at the same simulation time as without
temporal decoupling. The component does not trigger events immediately but stores
them in temporal queues with a timestamp (built using the local time converted into
simulation time). When the triggering time is due, the queue triggers the event at the
exact simulation time.

For cases when you do not select temporal decoupling, see “Register and Buffering” on
page 19-17.

Temporal Decoupling and No Buffering

When you select temporal decoupling and you do not select buffering, the TLM
component queues the inputs and the outputs in temporal queues between the interface
and the algorithm processing. When a thread writes data in those queues, the queue
sorts the data by timestamp. In order to reproduce the behavior of a register that allows
data overwriting, when a thread reads the queue, it receives the last written data before
its actual local time. The TLM component also queues all events exchanged between the
interface and the processing parts of the component in temporal queues. HDL Verifier
generates all timings using a timing annotation to the local time.

The following image illustrates a temporal queue:

The following image demonstrates a TLM component using temporal decoupling without
buffering.
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Temporal Decoupling and Buffering

When you select temporal decoupling and buffering, the TLM component queues the
inputs and outputs in FIFO temporal queues between the interface and the algorithm
processing. You define the simulated depth of the FIFOs in the TLM generator GUI.
When a thread writes data in those queues, the queue sorts the data by timestamp. In
order to reproduce the behavior of a FIFO that allows queuing of data in the limit of its
simulated depth, when a thread reads the queue, it receives the last Nth written data
before its actual local time (where N is the FIFO depth) . Imagine the FIFO depth as a
sliding window: the data a particular thread is viewing is limited to the simulated depth
of the FIFO and its view of the data moves or "slides" forward as local time advances. The
following image illustrates a FIFO temporal queue:
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The TLM component also queues all events exchanged between the interface and the
processing parts of the TLM component in temporal queues. HDL Verifier generates all
timings using a timing annotation to the local time.

The following image demonstrates a TLM component using temporal decoupling and
buffering.
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Getting Started with TLM Generator

This example shows how to configure a Simulink® model to generate a SystemC™/
TLM component using the tlmgenerator target for either Simulink Coder or Embedded
Coder™.

For this example, we use a Simulink model of a FIR filter as the basis of the SystemC/
TLM generation.

Requirements to run this example:

• MATLAB
• Simulink
• Simulink Coder
• HDL Verifier
• SystemC 2.3.1 (includes the TLM library)
• For code verification, make and a compatible GNU-compiler, gcc, in your path on

Linux®, or Visual Studio® compiler in your path on Windows®

Note: The example includes a code generation build procedure. Simulink does not
permit you to build programs in the MATLAB installation area. If necessary, change to
a working directory that is not in the MATLAB installation area prior to starting any
build.

1. Open Preconfigured Model

Open the FIR Filter model or, in the MATLAB command window, execute the following:

  >> openTlmgDemoModel('intro');

The following model opens in Simulink.

20-2



 Getting Started with TLM Generator

2. Set Simulink Coder Target to TLM Generator

a. Open the Configuration Parameters dialog box by selecting Simulation > Model
Configuration Parameters in the model window.

b. In the Configuration Parameters dialog box, select the Code Generation view in
the left-hand pane.

c. Under System target file, click Browse to select the TLM generator target.
You can choose tlmgenerator_grt.tlc to use Simulink Coder or tlmgenerator_ert.tlc
to use Embedded Coder for HDL Code generation. For this example, select
tlmgenerator_grt.tlc.
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3. Open TLM Generator View

In the Configuration Parameters dialog box, select the TLM Generator view in the
left-hand pane.
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The TLM Generator view has five tabs:

• TLM Mapping
• TLM Processing
• TLM Timing
• TLM Testbench
• TLM Compilation

You will need to set different generator options in each pane.

4. Select TLM Mapping Options

In the TLM Mapping tab, Socket Mapping allows you to select the number of sockets
for input data, output data, and control. Select the option, Three separate TLM
sockets for input data, output data, and control.
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The TLM Socket options allow you to define three different memory maps for your
generated TLM component.

For this example, select the following for the input and output data sockets:

• Auto-generated memory map for the input and output data sockets
• Individual input and output address offsets for each data socket. This option

generates a TLM component with one read register per model output and one
write register per model input with individual addresses. Each Simulink model
input is bound to its corresponding write register and each output is bound to its
corresponding read register.

The other memory map options you may consider are:
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• No memory map: This option generates a TLM component with only one read and
one write register without any address. The Simulink model inputs are bound to the
write register and the outputs are bound to the read register.

• [Auto-generated memory map with] Single input and output address offsets: This
option generates a TLM component with only one read and one write register with
one address each. The Simulink model inputs are bound to the write register and the
outputs are bound to the read register.

When you generate the component with a memory map, you can add a command and
status register, a test and set register, and tunable parameter registers.

For this example, select the following for the Control TLM Socket:

• Include a command and status register in the memory map. The command
and status register allows you to write command and read status during SystemC
simulation; for example, manual buffering or buffer status.

• Include tunable parameter registers in the memory map. Tunable parameter
registers allow you to read or write the tunable parameter values.

Although not used in this example, a test and set register can be used as a mutex when
multiple initiators access the component during SystemC simulation.

5. Select TLM Processing Options

In the TLM Generation pane, select the TLM Processing tab. The Algorithm
Processing and the Interface processing options allow you to define different
buffering and processing behaviors for your generated TLM component.
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The algorithm execution options are:

• SystemC Thread: The step function algorithm is executed in its own independent
SystemC thread.

• Callback Function: The step function algorithm is executed in a callback function
called from the interface.

The step function timing is determined by the value in the Algorithm step function
timing (ns) field. The algorithm timing is counted with a wait() in the thread or, if
temporal decoupling is enabled, the algorithm timing is counted with a quantum and
time annotation in the thread or callback.

For this example, select SystemC Thread and enter 100 in the field for Algorithm step
function timing.

Interface processing options:

• Enable temporal decoupling for loosely-timed components (ns): This option
allows time decoupling between the interface and the processing. A quantum and time
annotation replace the wait() function in the component. The data exchanged between
the interface and the processing are stored with timestamp annotation. You must
specify the maximum quantum time allowed in the system in the field Maximum
quantum for loosely-timed components (ns).
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• Enable payload buffering: This option adds fifo of definable size between the input/
output interface and the processing in the generated component. When you select this
option, you must also provide the Payload input buffer depth and the Payload
output buffer depth.

• Create an interrupt request port on the generated TLM component: This
option creates an interrupt port (type signal, bool>) that is triggered every time a set
of input has been processed.

For this example, select or enter the following choices:

• Select Enable temporal decoupling for loosely-timed components (ns), and
enter 1000 for Maximum quantum for loosely-timed components (ns).

• Select Enable payload buffering, and enter 5 for both the Payload input buffer
depth and the Payload output buffer depth.

• Select Create an interrupt request port on the generated TLM component.

6. Select the TLM Timing Options

Select the TLM Timing tab. The Interface Timing section allows you to define the
timing of the component input/output interface and processing thread.

For this example, the input and output delays are counted with wait() in the interface or,
if the temporal decoupling is enabled, they are annotated to the received transaction and
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sent back to the initiator. Set a time value of 5ns for each of the transactions of Input
Data Interface Timing, Output Data Interfacing Timing, and Control Interface
Timing.

7. Select TLM Testbench View

Select the TLM Testbench tab. The TLM Generator target can generate a stand-
alone SystemC/TLM test bench alongside the TLM component to verify the generated
algorithm in the context of a TLM initiator/target pair. The TLM Testbench view
provides run-time options for when the test bench code is generated and executed.

With the TLM Testbench options, you can:

• Choose to see verbose messages echoed to the command window during the SystemC/
TLM execution including TLM transaction and synchronization messages.

• Indicate that the test bench should execute with or without timing annotations.
• Indicate whether the initiator controls moving input and output datasets between

the registers and the buffers or whether the component performs the moves
automatically.
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For this example, select Generate testbench, With timing for Run-time timing
mode, and Automatic for both Input buffer triggering mode and Output buffer
triggering mode.

After code generation has successfully occurred for a component and test bench, the
Verify TLM Component button becomes enabled. Verify TLM Component performs
the following:

• Builds the generated code using make and generated makefiles.
• Runs Simulink to capture input stimulus and expected results.
• Converts the Simulink data to TLM vectors.
• Runs the stand-alone SystemC/TLM testbench executable.
• Converts the TLM results back to Simulink data.
• Performs a data comparison.
• Generates a Figure window for any signals that had data mis-compares.

The compilation of the generated files assumes the presence of make and a compatible
GNU-compiler, gcc, in your path on Linux®, or Visual Studio® compiler in your path on
Windows®.

8. Select TLM Compilation View

Select the TLM Compilation tab. This pane provides options to control the generation
of makefiles used to compile the generated code.
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Compiler Options:

The SystemC and TLM include library path options allow you to specify where the
makefiles can find the SystemC and TLM installations. The default values allow you
to use environment variables so that updates to your SystemC or TLM installations do
not require updating your Simulink models. You can set up the environment prior to
invoking MATLAB or use the MATLAB setenv command.

For this example, these are the environment variable values that were tested with
standard OSCI installations located in /tools:

• SYSTEMC_INC_PATH=/tools/systemc-2.3.0/include
• SYSTEMC_LIB_PATH=/tools/systemc-2.3.0/lib-linux64
• SYSTEMC_LIB_NAME=libsystemc.a (Linux) or systemc.lib (Windows)
• TLM_INC_PATH=/tools/systemc-2.3.0/include

Toolchain:

On Windows this option allows you to select a compiler toolchain when multiple version
of Microsoft Visual Studio are installed on the same machine. On Linux this option is
fixed on gcc.

Component Naming:

This option allows you to add your own tag to the name of the generated component. The
generated component name is built according to the following cases:

• If a user tag is specified: modelname_usertag_tlm
• If the user tag field is empty: modelname_tlm

For this example, enter intro for user tag.

9. Select Report

Select Report in the left-hand pane. For this example, select Create code generation
report and Open report automatically. These options generate a html report during
component generation. The Code generation report details the contents of each generated
file.
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10. Select Debug

Select Debug in the left-hand pane. The Debug pane allows you to choose the verbose
option during component generation. This option could be helpful to track a problem
when it occurs during component generation.

For this example, do not select any of these options.

11. Save TLM Generator Options

Click OK to apply these settings and exit the Configuration Parameters dialog box.
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12. Build Model

In the model window, right-click on the DualFilter block and select C/C++ Code >
Generate Code for this Subsystem in the context menu to start TLM component
generation.
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Alternatively, you can execute the following command in the MATLAB command
window:

  >> buildTlmgDemoModel('intro');

During execution, you will be prompted to select the tunable parameters. The dropdown
list of each coefficient allows you to select the storage class of the variable. The Storage
Class options are:

• Inlined - The inlined parameters are not tunable.
• SimulinkGlobal - The SimulinkGlobal variables are tunable.

ExportedGlobal, ImportedExtern and ImportedExternPointer are not supported
by the TLM Generation model.
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The option Simulink Global has been selected for this example. Click Build. The TLM
generation is completed when you see the following message appear in the MATLAB
command window:

### Starting Simulink Coder build procedure for model: DualFilter
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### Successful completion of Simulink Coder build procedure for model: DualFilter

13. Open Generated Files

Open the generated files in the MATLAB web browser by clicking on the links in the
generated report or in the MATLAB Editor (the generated files and report are located in
your current working directory):

• DualFilter_VP/DualFilter_intro_tlm_doc/html/DualFilter_codegen_rpt.html
• DualFilter_VP/DualFilter_intro_tlm/DualFilter_intro_tlm.xml
• DualFilter_VP/DualFilter_intro_tlm/include/DualFilter_intro_tlm_def.h
• DualFilter_VP/DualFilter_intro_tlm/include/DualFilter_intro_tlm.h
• DualFilter_VP/DualFilter_intro_tlm/src/DualFilter_intro_tlm.cpp
• DualFilter_VP/DualFilter_intro_tlm_tb/src/DualFilter_intro_tlm_tb.h
• DualFilter_VP/DualFilter_intro_tlm_tb/src/DualFilter_intro_tlm_tb.cpp
• DualFilter_VP/DualFilter_intro_tlm_tb/src/DualFilter_intro_tlm_tb_main.cpp

14. Verify Generated Code

a. Open the Model Configuration Parameters dialog box by selecting Simulation >
Configuration Parameters in the model window.

b. In the Configuration Parameters dialog box, select the TLM Generator view, and
then select the TLM Testbench tab.

c. In the TLM Testbench pane, click Verify TLM Component, to run the generated
testbench.
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Alternatively,you can execute the following command in the MATLAB command window:

  >> verifyTlmgDemoModel('intro')

This verify step performs the following actions:

• Builds the generated code.
• Runs Simulink to capture input stimulus and expected results.
• Converts the Simulink data to TLM vectors.
• Runs the stand-alone SystemC/TLM test bench executable.
• Converts the TLM results back to Simulink data.
• Performs a data comparison.
• Generates a Figure window for any signals that had data mis-compares.

15. Review Execution Log

The option to generate test bench allows you to see how the test bench initiator threads
interact and synchronize with the target. Look for the comparison result at the end of the
log and verify that there is no data miscompare.

### Starting component verification
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### Checking available compiler.

### Building testbench and TLM component.

 

Microsoft (R) Program Maintenance Utility Version 11.00.50727.1 

Copyright (C) Microsoft Corporation.  All rights reserved. 

 

 nmake.exe /nologo /f makefile.mk all-am OPT_CXXFLAGS="/O2 /MT /D _NDEBUG" OPT_LDFLAGS="" 

 cd ..\DualFilter_intro_tlm && nmake.exe /nologo /f makefile.mk all-am 

 cd ..\DualFilter && nmake.exe /nologo /f makefile.mk all-am 

 cl.exe /c /O2 /MT /D _NDEBUG /Fd".\obj\DualFilter.pdb"  /D "WIN64" /D "_LIB" /D "_CRT_SECURE_NO_WARNINGS" /D "_UNICODE" /D "UNICODE" /I ".\include" /I ".\utils"  /nologo /FD /EHsc /W3 /TP /wd4244 /wd4267 /vmg /Foobj\DualFilter.obj src\DualFilter.cpp 

DualFilter.cpp 

 cl.exe /c /O2 /MT /D _NDEBUG /Fd".\obj\DualFilter.pdb"  /D "WIN64" /D "_LIB" /D "_CRT_SECURE_NO_WARNINGS" /D "_UNICODE" /D "UNICODE" /I ".\include" /I ".\utils"  /nologo /FD /EHsc /W3 /TP /wd4244 /wd4267 /vmg /Foobj\DualFilter_data.obj src\DualFilter_data.cpp 

DualFilter_data.cpp 

 lib.exe /nologo /subsystem:console /out:lib\DualFilter.lib obj\DualFilter.obj obj\DualFilter_data.obj 

-- Build DualFilter.lib completed -- 

 

 cl.exe /c /O2 /MT /D _NDEBUG /Fd".\obj\DualFilter_intro_tlm.pdb"  /D "WIN64" /D "_LIB" /D "_CRT_SECURE_NO_WARNINGS" /D "_UNICODE" /D "UNICODE" /I ".\include" /I "..\DualFilter\include" /I "..\DualFilter\utils" /I "W:\share\apps\HDLTools\OpenSource\SystemC\systemc\include" /I "W:\share\apps\HDLTools\OpenSource\SystemC\systemc\include" /D SC_INCLUDE_DYNAMIC_PROCESSES /nologo /FD /EHsc /W3 /TP /wd4244 /wd4267 /vmg /Foobj\DualFilter_intro_tlm.obj src\DualFilter_intro_tlm.cpp 

DualFilter_intro_tlm.cpp 

 lib.exe /nologo /subsystem:console /out:lib\DualFilter_intro_tlm.lib obj\DualFilter_intro_tlm.obj 

-- Build DualFilter_intro_tlm.lib completed -- 

 

 cl.exe /c /O2 /MT /D _NDEBUG /Fd".\obj\DualFilter_intro_tlm_tb.pdb"  /D "WIN64" /D "_CONSOLE" /D "_CRT_SECURE_NO_WARNINGS" /D "_UNICODE" /D "UNICODE" /I ".\include" /I "..\DualFilter_intro_tlm\include" /I "..\DualFilter\include" /I "..\DualFilter\utils" /I "W:\share\apps\HDLTools\OpenSource\SystemC\systemc\include" /I "W:\share\apps\HDLTools\OpenSource\SystemC\systemc\include" /I "T:\11\jchevali.Bfpga.j162301\matlab\extern\include" /D SC_INCLUDE_DYNAMIC_PROCESSES /D TLMG_CURR_VERBOSITY=tlmgPrintTerse /nologo /FD /EHsc /W3 /TP /wd4244 /wd4267 /vmg /Foobj\mw_support_tb.obj src\mw_support_tb.cpp 

mw_support_tb.cpp 

 cl.exe /c /O2 /MT /D _NDEBUG /Fd".\obj\DualFilter_intro_tlm_tb.pdb"  /D "WIN64" /D "_CONSOLE" /D "_CRT_SECURE_NO_WARNINGS" /D "_UNICODE" /D "UNICODE" /I ".\include" /I "..\DualFilter_intro_tlm\include" /I "..\DualFilter\include" /I "..\DualFilter\utils" /I "W:\share\apps\HDLTools\OpenSource\SystemC\systemc\include" /I "W:\share\apps\HDLTools\OpenSource\SystemC\systemc\include" /I "T:\11\jchevali.Bfpga.j162301\matlab\extern\include" /D SC_INCLUDE_DYNAMIC_PROCESSES /D TLMG_CURR_VERBOSITY=tlmgPrintTerse /nologo /FD /EHsc /W3 /TP /wd4244 /wd4267 /vmg /Foobj\DualFilter_intro_tlm_tb.obj src\DualFilter_intro_tlm_tb.cpp 

DualFilter_intro_tlm_tb.cpp 

 cl.exe /c /O2 /MT /D _NDEBUG /Fd".\obj\DualFilter_intro_tlm_tb.pdb"  /D "WIN64" /D "_CONSOLE" /D "_CRT_SECURE_NO_WARNINGS" /D "_UNICODE" /D "UNICODE" /I ".\include" /I "..\DualFilter_intro_tlm\include" /I "..\DualFilter\include" /I "..\DualFilter\utils" /I "W:\share\apps\HDLTools\OpenSource\SystemC\systemc\include" /I "W:\share\apps\HDLTools\OpenSource\SystemC\systemc\include" /I "T:\11\jchevali.Bfpga.j162301\matlab\extern\include" /D SC_INCLUDE_DYNAMIC_PROCESSES /D TLMG_CURR_VERBOSITY=tlmgPrintTerse /nologo /FD /EHsc /W3 /TP /wd4244 /wd4267 /vmg /Foobj\DualFilter_intro_tlm_tb_main.obj src\DualFilter_intro_tlm_tb_main.cpp 

DualFilter_intro_tlm_tb_main.cpp 

 link.exe obj\mw_support_tb.obj obj\DualFilter_intro_tlm_tb.obj obj\DualFilter_intro_tlm_tb_main.obj /LIBPATH:"W:\share\apps\HDLTools\OpenSource\SystemC\systemc\lib\win64" /LIBPATH:"T:\11\jchevali.Bfpga.j162301\matlab\extern\lib\win64\microsoft" /nologo /INCREMENTAL  /SUBSYSTEM:CONSOLE /MACHINE:X64 ..\DualFilter_intro_tlm\lib\DualFilter_intro_tlm.lib ..\DualFilter\lib\DualFilter.lib "systemc-vs-11.0.lib" libmat.lib libmx.lib libeng.lib /PDB:".\obj\DualFilter_intro_tlm_tb.pdb" /out:DualFilter_intro_tlm_tb.exe 

-- Build DualFilter_intro_tlm_tb.exe completed -- 

 

### Running Simulink simulation to capture inputs and expected outputs.

### Executing TLM testbench to generate actual outputs.

 

        SystemC 2.3.1-Accellera --- Jun 18 2014 15:36:00 

        Copyright (c) 1996-2014 by all Contributors, 

        ALL RIGHTS RESERVED 

[       0 s] (readerThread)   ## found input field tlmg_in1 at tlmg_tlminvec fieldnum 0 

[       0 s] (readerThread)   ## found input field tlmg_in2 at tlmg_tlminvec fieldnum 1 

[       0 s] (readerThread)   ## found output field tlmg_out1 at tlmg_tlminvec fieldnum 2 

[       0 s] (readerThread)   ## found output field tlmg_out2 at tlmg_tlminvec fieldnum 3 

[       0 s] (readerThread)   ## setup 2 input data fields, 2 output data fields 

## STARTING SIMULATION 

[       0 s] (writerThread) ## Start of vectors from MAT file.  Will display '.' for every 100 vectors played. 

[  12110 ns] (writerThread) . 
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[  24210 ns] (writerThread) . 

[  36310 ns] (writerThread) . 

[  48410 ns] (writerThread) . 

[  60510 ns] (writerThread) . 

[  60655 ns] (readerThread)   ## end of output data...Terminating readerThread 

[  60655 ns] (readerThread)    

############################################# 

## END OF VECTORS. PLAYED   501 VECTORS.   ## 

## DATA MISCOMPARES     :     0            ## 

## TRANSPORT ERRORS     :    NO            ## 

## MAT FILE WRITE ERRORS:    NO            ## 

############################################# 

[  60655 ns] (readerThread)   ##  Wrote results MAT file. 

[  61040 ns] (writerThread) ## end of data...Terminating initiator thread. 

## SIMULATION HAS ENDED 

### Comparing expected vs. actual results.

Data successfully compared for signal tlmg_out1.

Data successfully compared for signal tlmg_out2.

### Component verification completed

This concludes the Getting Started with TLM Generator example.
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TLM Component Generation Workflow

The following workflow lists the steps required to generate a TLM component using HDL
Verifier software:

1 Develop algorithm in Simulink. See “Subsystem Guidelines and Limitations” on page
21-3.

2 “Select TLM Generator System Target” on page 21-4
3 “Select TLM Mapping Options” on page 21-7
4 “Select TLM Processing Options” on page 21-10
5 “Select TLM Timing Options” on page 21-12
6 “Select TLM Test Bench Options” on page 21-13
7 “Select TLM Compilation Options” on page 21-15
8 “Generate Component and Test Bench” on page 21-18
9 (Optional) “Run TLM Component Test Bench” on page 22-5 (verify TLM

component)
10 “Export TLM Component” on page 23-2
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Subsystem Guidelines and Limitations

Most subsystems that can be converted to C code are suitable for generating a TLM
component. When you are considering a subsystem for TLM generation, keep in mind the
following limitations:

• Simulink subsystem limitations for TLM generation:

• Same limitations as the Embedded Coder target if you are using Embedded Coder.
If you are using Simulink Coder license, then Simulink Coder limitations are the
ones that apply.

• Bus data type not supported
• Variable-size signals not supported

• Simulink subsystem limitations tor TLM test bench generation:

• Composite Simulink signal types not supported (e.g., buses, no-contiguous memory
mux block outputs)

• Multirate subsystems are not supported (however, constants are supported)
• Complex signals are not supported
• Subsystems with “action” ports are not supported (e.g., triggered, enabled, if

Action, switch case Action)
• SystemC/TLM generated component limitations:

• TLM simple target socket (with blocking and debug interfaces) using Generic
Payload

• TLM target only (no TLM initiator generation)
• 32-bit bus width only (address align on 4 bytes)
• No byte enable
• No endianess option
• No streaming
• No DMI
• Generic Payload extensions ignored

More About
• “TLM Component Generation Workflow” on page 21-2
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Select TLM Generator System Target

To activate the TLM component generation options, select the system target file.

1 Select subsystem. See “Subsystem Guidelines and Limitations” on page 21-3 for help
on selecting a suitable subsystem.

2 Select Simulation > Model Configuration Parameters in Simulink.
3 Select Code Generation
4 Click Browse on System Target File. Then, follow these guidelines for selecting

the correct system target file:

• With Simulink Coder license, select: tlmgenerator_grt.tlc
• With Embedded Coder license (Simulink Coder license is also required),

select: tlmgenerator_ert.tlc or tlmgenerator_grt.tlc. Target
tlmgenerator_ert.tlc allows you to access its additional code generation
options using the Model Configuration Parameters dialog box.

5 Click OK to see the new TLM Generator option under Code Generation.
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6 Click TLM Generator to display the TLM Generation options panes.
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More About
• “TLM Component Generation Workflow” on page 21-2
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Select TLM Mapping Options

In this section...

“Socket Mapping” on page 21-7
“Memory Map Configuration” on page 21-8

Select socket and memory map configuration for your TLM component on the TLM
Mapping tab. You can select a single socket, or three sockets, generated from your
Simulink model, or choose to import a custom socket map using an IP-XACT file. If you
select one of the fixed socket configurations, you can specify additional memory map
options.

Socket Mapping

You can choose to have a single, combined TLM socket for input data, output data, and
control or you can choose three separate TLM socket for input data, output data, and
control so that you can connect the sockets to different buses. Or, you can customize the
socket mapping using an IP-XACT file.

• One combined TLM socket for input data, output data, and control —
Selecting this option displays the Combined TLM Socket parameters to configure
the generated memory map. See “Memory Map Configuration” on page 21-8.

• Three separate TLM sockets for input data, output data, and control —
Selecting this option displays separate memory map parameters for the three sockets.
See “Memory Map Configuration” on page 21-8.

• Defined by imported IP-XACT file — When prompted, provide the path and file
name of the IP-XACT file.

See “Prepare IP-XACT File for Import” on page 21-19 for IP-XACT file
requirements.
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By default, only those registers mapped to Simulink signals are implemented in
the generated TLM component. Select Generate code for unmapped IP_XACT
registers/bitfields to include all registers from the IP-XACT file in the generated
TLM component.

When you import an IP-XACT file, you can optionally generate an interface
compatible with the System C Modeling Library (SCML). Select Implement memory
map with SCML. See “Implement Memory Map with SCML” on page 21-31. To
use this feature, you must install SCML from Synopsys®.

Memory Map Configuration

For each socket, choose the socket mapping type. For a description of the options
available under Memory Map Type, see “Memory Mapping” on page 19-4.

If you choose Auto-generated memory map, the options expand to include the Auto-
Generated Memory Map Type section, as shown in the following figures:

Single TLM Socket Separate TLM Sockets

• Select the autogenerated memory map type for each TLM socket:

• Single input and output address offsets — See “Automatically Generated
Memory Map with Single Address” on page 19-5.
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• Individual input and output address offsets — See “Automatically Generated
Memory Map with Individual Addresses” on page 19-7.

• For the control socket (either separate or combined), select any of the following
options:

• Include a command and status register in the memory map — See “Register
and Buffering” on page 19-17.

• Include a test and set register in the memory map — See “Test and Set
Register” on page 19-16.

• Include tunable parameter registers in the memory map —The tunable
parameter registers allow you to make adjustments to the TLM component before
or during simulation.

More About
• “TLM Component Generation Workflow” on page 21-2
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Select TLM Processing Options

You can choose between having a SystemC thread or a callback function in your
generated TLM component.

Note: When you generate a SCML interface, only SystemC Thread is supported.

• SystemC Thread — The algorithm executes in its own independent SystemC
thread. When the input buffers are full or when you write a specific command in the
command and status register and event is triggered that the system scheduler picks
up. It then executes that function. Results in a likely more realistic simulation but the
execution could potentially be slower.

• Callback Function — The algorithm executes in a callback function called from
the interface. When the input buffers are full or when you write a specific command
in the command and status register, the function is called directly. Results in faster
execution but could be less realistic as the callback method does not process events in
the same order they would occur in a real world scenario.

• Algorithm step function timing (ns) — Enter time in nanoseconds. The algorithm
timing is counted with a wait() in the thread or, if temporal decoupling is enabled,
the algorithm timing is counted with a quantum and time annotation in the thread or
callback.

Interface Processing

• Enable temporal decoupling for loosely-timed simulation: Select to enable time
decoupling between the interface and the processing. A quantum and time annotation
replace the wait() function in the component. The data exchanged between the
interface and the processing are stored with timestamp annotation. See “Temporal
Decoupling” on page 19-19.
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If you select Enable temporal decoupling for loosely-timed simulation, enter
the Maximum quantity for loosely-timed components (ns).

• Enable payload buffering: Select to enable payload buffering. This option adds fifo
between the input/output interface and the processing in the generated component.
Enter the Payload input buffer depth and the Payload output buffer depth.

• Create an interrupt request port on the generated TLM component: Select
to create interrupt request port. This interrupt triggers every time a set of input has
been processed.

Note: Enable temporal decoupling for loosely-timed simulation and Enable
payload buffering will be removed in a future release. Generate your TLM component
with the default settings instead. You can manually add a buffer to your SystemC
environment if necessary.

More About
• “TLM Component Generation Workflow” on page 21-2
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Select TLM Timing Options

Specify timing parameters to approximate the actual time consumed by operations in
a real system. These timing values are stored in the TLM component and supplied to
the SystemC environment when the TLM component is used. Your system simulation
environment must perform accounting of execution times in the system, as described in
the OSCI TLM-2.0 Language Reference Manual. These values add temporal realism to
your system simulations.

For all timing options, specify the desired time in nanoseconds. Each socket has
independent timing parameters. The specified timing values are implemented as
constants in the generated code. This delay is returned to the initiator as a wait() or
time annotation in the TLM component thread executing the algorithm, depending on
the temporal decoupling.

At runtime, you can dynamically control the TLM component via a backdoor interface
to enable and disable the return of timing information. See the generated test bench code
for details (locate mw_backdoorcfg_IF).

More About
• “TLM Component Generation Workflow” on page 21-2
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Select TLM Test Bench Options

These options control generation of an automatic test bench that compares your
generated TLM component with your Simulink model. This test bench is not supported
if you generate a TLM component for an operating system different than your MATLAB
host machine.

Use the test bench options to specify these options:

• Generate testbench — Select to generate a test bench for the generated TLM
component.

• Generate verbose messages during testbench execution — The default is not to
generate these messages.

• Run-time timing mode — Specify whether the test bench executes with or without
timing annotations. When you select With timing, the target annotates TLM
component transactions with delays, and the initiator module honors them. When
you do not use temporal decoupling, the initiator module synchronizes immediately
following the transaction execution. When you enable temporal decoupling, the
initiator module does not synchronize to the annotated delays until the quantum is
reached. See “Temporal Decoupling” on page 19-19,

When you select Without timing, the target does not annotate TLM component
transaction with delays. The initiator module and target only perform
synchronization using zero-time wait calls.
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• Buffer triggering modes — Specify whether the initiator controls moving datasets
between the registers and the buffers or if the component moves the datasets
automatically. In your TLM environment, these specifications are performed via
a runtime configuration command. You can change them dynamically throughout
simulation.

The default is Automatic mode. If you instead choose Manual mode, the initiator
module must explicitly write a command to the command and status register to move
the input data set from the register to the input buffer, or move the output data set
from the output buffer to the output register.

Manual mode enables an initiator module to reuse a complete or partial input data
set for a subsequent execution of the algorithm, thereby saving simulation time by
avoiding data TLM component transactions don’t need. For example, if the target
uses a full memory map and the initiator module detects that only one of the values
is changing, the initiator module may execute TLM component transactions only for
the changing value. The initiator module then writes a push command to execute the
algorithm.

Note: For this field to be enabled, select Include a command and status register
in the memory map in the TLM Generation tab.

• Component Verification

After code generation is successfully completed, you can use Verify TLM
Component to perform the following actions:

• Build the generated code using make and generated makefiles.
• Run Simulink to capture input stimulus and expected results.
• Convert the Simulink data to TLM vectors.
• Run the standalone SystemC/TLM test bench executable.
• Convert the TLM results back to Simulink data.
• Perform a data comparison.
• Generate a Figure window for any signals that had data miscompares.

More About
• “TLM Component Generation Workflow” on page 21-2
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Select TLM Compilation Options

Along with the generated component, the TLM generator also generates a makefile for
building the shared libraries. Use the options on the TLM Compilation tab to specify
makefile attributes before you generate code. You can generate a TLM component to
run on a different operating system than that of your MATLAB machine. Specify the
compiler parameters for the target machine where you will run the makefile.

The default values are environment variables (for example, $SYSTEMC_INC_PATH).
If you use the default variable name and define these environment variables in your
system, you can usually update your installation without having to update your Simulink
models.

• SystemC include path — Specify the location of the include folder in your SystemC
installation. For example:

 /systemc-2.2.0/include

Alternately, use the default environment variable and define $SYSTEMC_INC_PATH in
your system.

• SystemC library path — Specify the location of the library folder in your SystemC
installation. For example:

/systemc-2.2.0/lib

Alternately, use the default environment variable and define $SYSTEMC_LIB_PATH in
your system.

• SystemC library name — Specify the name of the SystemC library in your SystemC
installation. For example:

• Windows: systemc.lib
• Linux: libsystemc.a
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Alternately, use the default environment variable and define $SYSTEMC_LIB_NAME in
your system.

• TLM Include Path — Specify the location of the include folder in your TLM
installation. For example:

/tlm-2.0.1/include

Alternately, use the default environment variable and define $TLM_INC_PATH in your
system. Since SystemC 2.2, the TLM library is included with SystemC. Therefore, this
path might be the same as $SYSTEMC_INC_PATH.

• Operating System — You can generate a TLM component for an operating system
different from that of your MATLAB host machine. Select Windows 64 or Linux 64.
The Toolchain options change depending on your target operating system.

• Toolchain — Specify a compiler from the Toolchain drop-down list. The available
options are the compiler versions installed on your computer. The default option is
the version most recently installed. See “TLM Generation Requirements” for a list of
supported compilers.

If you choose Implement memory map with SCML on the TLM Mapping tab, specify
the location of your SCML installation using these additional options.

• SCML include path — Specify the location of the include folder in your SCML
installation. For example:

 /scml-2.2/include
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Alternately, use the default environment variable and define $SCML_INC_PATH in
your system.

• SCML library path — Specify the location of the library folder in your SCML
installation. For example:

• Windows: /scml-2.2/lib/win64
• Linux: /scml-2.2/lib/glnxa64

Alternately, use the default environment variable and define $SCML_LIB_PATH in
your system.

• SCML library name — Specify the name of the SCML library in your SCML
installation. For example:

scml2-vs-11.0.lib

Alternately, use the default environment variable and define $SCML_LIB_NAME in
your system.

• SCML logging library name — Specify the name of the SCML logging library in
your SCML installation. For example:

scml2_logging-vs-11.0.lib

Alternately, use the default environment variable and define
$SCML_LOGGING_LIB_NAME in your system.

Component Naming

• User-defined tag for TLM component names — Add additional text to your TLM
component class name identifier. To see how the user tag is applied, see “Identify
Generated Files” on page 23-2.

More About
• “TLM Component Generation Workflow” on page 21-2
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Generate Component and Test Bench

1 If you have not yet done so, finish selecting the TLM generation options and click OK
to save your changes and exit the TLM Generation options panes.

2 Generate code. Select one of the following ways:

• Press Ctrl-B (full model).
• Right-click the subsystem and select C/C++ Code > Build This Subsystem.
• Select Code > C/C++ Code > Build Model (this option builds the full model).

Note: Generate the component and test bench on the architecture you plan to use for
running the SystemC simulation.

3 Go to “Run TLM Component Test Bench” on page 22-5 (optional).

For more about using the generated TLM component, see “Export TLM Component” on
page 23-2.
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Prepare IP-XACT File for Import

In this section...

“Required Information for Imported IP-XACT Files” on page 21-19
“Bus Interface Definition with No Memory Map” on page 21-20
“Bus Interface Definition with Memory Mapping” on page 21-23

Required Information for Imported IP-XACT Files

All IP-XACT XML files must contain information specific to MathWorks, defined in
elements within the component. If this information is not present, the TLM generator
cannot parse the IP-XACT file.

The following parameter name-value pairs are required for <spirit:component>:

• <spirit:parameter>

     <spirit:name>MWVendor</spirit:name>

     <spirit:value>MathWorks</spirit:value>

</spirit:parameter>

• <spirit:parameter>

     <spirit:name>MWVersion</spirit:name>

     <spirit:value>1.0</spirit:value>

</spirit:parameter>

• <spirit:parameter>

     <spirit:name>MWModel</spirit:name>

     <spirit:value>name_of_model</spirit:value>

</spirit:parameter>

• <spirit:parameter>

     <spirit:name>MWBlock</spirit:name>
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     <spirit:value>name_of_block</spirit:value>

</spirit:parameter>

This image shows these required elements within an IP-XACT XML file.

Bus Interface Definition with No Memory Map

• “General Guidelines” on page 21-21
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• “Simulink Mapping with No Memory Map” on page 21-21

General Guidelines

Write the bus definitions for your model according to IEEE Standard for IP-XACT
1685-2009.

If you want to use Simulink mapping, all bus interfaces that contain Simulink mapping
must be slave interfaces.

Each bus interface with no memory map has one of the following element arrangements
for Simulink mapping:

• No mapping to Simulink
• Mapping to Simulink inputs, Simulink outputs, or a mix of inputs and outputs
• Mapping to Simulink tunable parameters

Although each bus interface can have only one arrangement, the IP-XACT file can
contain multiple bus interface definitions, each having a different arrangement.

Simulink Mapping with No Memory Map

Each <spirit:busInterface> definition containing Simulink mapping is
mapped to the TLM target socket. Within the <spirit:parameters> tag, add a
<spirit:parameter> name-value pair that defines the Simulink mapping. For
example:

<spirit:parameter>

    <spirit:name>MWMapInput</spirit:name>

    <spirit:value>input_1</spirit:value>

</spirit:parameter>

This image shows some bus interfaces that are mapped to Simulink inputs.
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The inputs are mapped together in one bus interface definition. The outputs are in a
separate bus interface. The filter coefficients are in another, separate bus interface.
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Alternatively, you can define the inputs and outputs together in a single bus interface
definition. However, the filter coefficients must remain in their own separate bus
interface definition.

Bus Interface Definition with Memory Mapping

• “General Guidelines” on page 21-23
• “Simulink Mapping Within a Memory Map” on page 21-23

General Guidelines

Write the bus definitions for your model according to IEEE Standard for IP-XACT
1685-2009. The following permissions apply:

• Input registers — Write-only or read-write.
• Output registers — Read-only or read-write.
• Parameters register — Read-only, write-only, or read-write, depending on your

requirements.

Make the spirit size of each register, in bits, greater than or equal to the size of that
input, output, or parameter in Simulink.

If you want to use Simulink mapping, all bus interfaces that contain Simulink mapping
must be slave interfaces.

Simulink Mapping Within a Memory Map

If you have a memory map reference in the bus interface, then you must express the
Simulink mapping in the memory map, not in the bus interface.

The Simulink mapping for each register can consist of the following element
arrangements:

• No mapping to Simulink (that is, no mapping information is needed in the register)
• Mapping to Simulink inputs, Simulink outputs, or a mix of inputs and outputs
• Mapping to Simulink tunable parameters

Each register can have one of these arrangements, but you cannot mix these options. You
also cannot have multiple input-outputs. However, the bus interface can contain multiple
registers, each having a different arrangement.
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To add inputs, outputs, or parameters to the IP-XACT file:

1 Each <spirit:busInterface> definition containing Simulink mapping is mapped
to the TLM target socket. Add a <spirit:parameter> name-value pair that
indicates to the TLM generator that there is Simulink mapping in the memory map:

<spirit:parameter>

    <spirit:name>MWMap</spirit:name>

    <spirit:value>true</spirit:value>

</spirit:parameter>

2 In each <spirit:memoryMap> interface, in each <spirit:register> definition,
within the <spirit:parameters> tag, add a <spirit:parameter> name-value
pair with the Simulink mapping:

<spirit:parameter>

    <spirit:name>MWMapInput</spirit:name>

    <spirit:value>input1</spirit:value>

</spirit:parameter>

3 To optionally specify field locations within a register, specify a <spirit:field>
definition in the <spirit:register>. Use the <spirit:bitWidth> and
<spirit:bitOffset> tags to define each <spirit:field>. Include the
<spirit:parameter> name-value pair with the Simulink mapping in the
<spirit:field> definition.

<spirit:field>

   <spirit:name>OUTPUT_1</spirit:name>

   <spirit:bitOffset>32</spirit:bitOffset>

   <spirit:bitWidth>32</spirit:bitWidth>

   <spirit:access>read-only</spirit:access>

   <spirit:parameters>

      <spirit:parameter>

         <spirit:name>MWMapOutput</spirit:name>

         <spirit:value>output_1</spirit:value>

      </spirit:parameter>

   </spirit:parameters>

</spirit:field>

This image demonstrates this arrangement for a Simulink input.
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More About
• “Contents of Generated IP-XACT File” on page 21-27
• IEEE Standard for IP-XACT 1685-2009
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Contents of Generated IP-XACT File

In this section...

“Overview of Generated IP-XACT File” on page 21-27
“Generated Simulink Mapping” on page 21-27
“Generated Simulink Mapping in Memory Map” on page 21-28
“Generated Metadata” on page 21-29

Overview of Generated IP-XACT File

The TLM generator automatically generates an IP-XACT file that complies with IEEE
Standard for IP-XACT 1685-2009. You can find this file in the same folder as the
generated makefile.

The generated IP-XACT file contains the following:

• Mapping information between Simulink and the generated TLM component.
• Metadata specific to MathWorks and the model. This data is intended primarily for

reference, but it is required when importing the file for TLM generation.

Generated Simulink Mapping

Each bus interface that uses Simulink mapping without a memory map is defined in the
generated file as:

• Inputs
• Outputs
• A combination of inputs and outputs
• Parameters

You can combine inputs and outputs in a single bus interface definition, but you cannot
mix parameters and I/O. These elements are defined in a <spirit:parameter> name-
value pair.

This example from a generated IP-XACT file shows Simulink mapping without a memory
map.
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Generated Simulink Mapping in Memory Map

In each bus interface with a memory map, the Simulink mapping is expressed in the
memory map, not in the bus interface.

The bus interface definition, <spirit:busInterface>, contains a
<spirit:parameter> name-value pair indicating that there is a memory map in use for
the interface.
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The memory map interface, <spirit:memoryMap>, contains a <spirit:parameter>
name-value pair with the Simulink mapping within each register:

The Simulink mapping for each register is defined in the generated file as:

• Input
• Outputs
• A combination of inputs and outputs
• Parameters

You can combine inputs and outputs in a single bus interface definition, but you cannot
mix parameters and I/O.

Generated Metadata

Each component definition, <spirit:component>, contains information specific to
MathWorks and the model. This information is located within a <spirit:parameter>
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element, specified with the <spirit:name> and <spirit:value> tags. If you plan
to import the generated IP-XACT file for use with the TLM generator, these fields are
required.

This example shows the metadata in a generated IP-XACT file.

Related Examples
• “Prepare IP-XACT File for Import” on page 21-19

More About
• IEEE Standard for IP-XACT 1685-2009
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Implement Memory Map with SCML

In this section...

“What Is SCML?” on page 21-31
“Workflow” on page 21-31
“Generated Code” on page 21-31

What Is SCML?

The System C Modeling Library (SCML) is a TLM 2.0 compatible API library for creating
TLM model interfaces for use with Synopsys prototyping tools. These tools enable early
software integration and testing. The SCML interface provides backdoor register access
for the Synopsys tools during simulation. Use HDL Verifier software to export a TLM
component with an SCML interface for seamless use with the Synopsys prototyping tools.

Workflow

To generate a TLM component with SCML memory map:

1 Install SCML. You can download SCML from Synopsys, see https://
www.synopsys.com/cgi-bin/slcw/kits/reg.cgi.

2 Open Configuration Parameters>Code Generation>TLM Generator. See
“Select TLM Generator System Target” on page 21-4.

3 On the TLM Mapping tab, provide an IP-XACT file describing the memory map of
your component. Then select the SCML option. See “Select TLM Mapping Options”
on page 21-7.

4 Specify the location of your SCML installation on the TLM Compilation tab. See
“Select TLM Compilation Options” on page 21-15.

5 Generate code for your model as you would for any other model. See “Generate
Component and Test Bench” on page 21-18.

Generated Code

When you generate code for your model, the TLM generator creates the same set of
files to implement the TLM component as it would without SCML. The files are named
SystemName_scml rather than SystemName_tlm.
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SCML supports bit widths of 8, 16, 32, 64, 128, and 256. When generating the SCML
interface for Simulink signals, the generator rounds up to the next supported size.

IP-XACT classes are translated to SCML classes according to this mapping.

IP-XACT Class SCML Class

spirit::businterface scml2::tlm2_gp_target_adapter

spirit:addressBlock scml2::memory

spirit:register scml2::reg

spirit:field scml2::bitfield

The SCML interface has no effect on test bench generation for the TLM component. The
test bench does not use the SCML access functions.

External Websites
• https://www.synopsys.com/cgi-bin/slcw/kits/reg.cgi
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• “Testing TLM Components” on page 22-2
• “Run TLM Component Test Bench” on page 22-5
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Testing TLM Components

In this section...

“TLM Component Test Bench Overview” on page 22-2
“TLM Component Compilation” on page 22-2
“Automatic Verification of the Generated Component” on page 22-3
“Report Generation” on page 22-3
“Working with Configurations” on page 22-3
“Considerations When Creating a TLM Component Test Bench” on page 22-3

TLM Component Test Bench Overview

The test bench generation option is controlled by the TLM Testbench tab of the
Configuration Parameters dialog box. This option creates a standalone SystemC test
bench for the generated component. The test bench works by applying test vectors
against the generated TLM component and checking the results of each transaction.
When you click the Verify TLM Component button on the TLM Testbench tab, the
test vectors are automatically captured from a Simulink simulation of your model .

You can configure the generated test bench to specify the timing mode and the triggering
modes for input and output buffering. The latter choice allows you to indicate whether
the initiator module controls moving input and output data sets between the registers
and the buffers or whether the component performs the moves automatically. Optionally,
the test bench can also produce verbose messages at runtime to help you see the status of
the SystemC simulation.

Note: A TLM test bench is not supported when you generate a component for a host with
a different operating system from your MATLAB machine.

TLM Component Compilation

The TLM Compilation tab in the Configuration Parameters dialog box provides
SystemC and TLM library location information. You can use environment variables to
specify these locations.
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The information you provide is used to construct makefile. You can use these makefiles
to build the component and test bench. You can also use this makefile to build an
executable of the TLM component and test bench outside of the MATLAB environment.

Automatic Verification of the Generated Component

The TLM Testbench tab of the configuration parameters provides a Verify TLM
Component button that:

• Automatically generates input stimulus and expected output data
• Builds and executes the component and the test bench together
• Automatically checks the outputs of the component

It performs the checking by capturing the outputs from the SystemC simulation,
converting them to Simulink data, and comparing them in Simulink to the results of
the Simulink simulation.

Report Generation

The tlmgenerator target supplies an HTML document containing details about the
generated component. The document contains links to the generated source code files.
Report generation can be configured via the Simulink Coder Report pane in the
configuration parameters. Report generation is not strictly a test bench feature, but the
process does include use of test bench files.

Working with Configurations

After you select configuration options, you can save them with your Simulink model.
You can also restore saved configurations made in a previous session. In addition, you
can save and choose from multiple configurations for a given model. See the section
"Overview of Model Referencing" in the Simulink documentation. for information on
working with configurations.

Considerations When Creating a TLM Component Test Bench

For optimizing your generated TLM code and achieving the desired test bench, you
should keep the following considerations in mind when developing your Simulink model:

• Your model can use only a single rate.
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• The composite signals on your model must be contiguous in memory. You can make
mux and bus output signals contiguous with the Signal Conversion block.

• If your model contains complex signals, you must split them first. Split complex
signals with the Simulink Complex to Real-Imag block. You can then combine the
signals again with the Real-Imag to Complex block on the other side of your design.

• Your design can contain a Triggered or Enabled subsystem, but the design you
generate cannot itself be a Triggered or Enabled subsystem.

• HDL Verifier can generate a Simulink design that involves continuous time signals.
When the Simulink simulation and the captured vector replay in SystemC, they
may not yield exactly the same results. The plot of the difference reveals essentially
the same curve with numerical differences that are more pronounced at signal
transitions, as shown in the following MATLAB Figure windows.

This difference occurs because the Simulink signal capture necessarily makes the
signals discrete and thus the same exact data is not used in both the Simulink and
stand-alone SystemC simulations. You can improve the fidelity of the discrete signal
simulation in SystemC by choosing a smaller fundamental step size in Simulink
before clicking Verify TLM Component.
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Run TLM Component Test Bench

After the TLM component and test bench have been generated, you can verify the
generated TLM component using the test bench that was just created:

1 Open Model Configuration Parameters. Click on TLM Generation.
2 Select the TLM Testbench pane.
3 Click Verify TLM Component. The software performs the following actions:

• Builds the generated code using make and generated makefiles.
• Runs Simulink to capture input stimulus and expected results.
• Converts the Simulink data to TLM vectors.
• Runs the standalone SystemC/TLM test bench executable.
• Converts the TLM results back to Simulink data.
• Performs a data comparison.
• Generates a Figure window for any signals that had data miscompares.

Note: You must generate the component and test bench before you can select Verify
TLM Component. See “Generate Component and Test Bench” on page 21-18.
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• “Export TLM Component” on page 23-2
• “TLM Component Constructor” on page 23-8
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Export TLM Component

In this section...

“Identify Generated Files” on page 23-2
“Create Static Library with TLM Component” on page 23-4
“Create Standalone Executable with TLM Component” on page 23-5

Identify Generated Files

After code generation completes, go to your working folder. There you can find the
following folder: model_name_VP/. This folder contains the files generated for the TLM
component. The files appear under the subfolders described in the following table.

Directory Name Files Description
model_name include/model_name*.h

src/model_name.cpp
Files relative to the behavior of the
model. These files are independent of
the TLM options. HDL Verifier provides
a makefile for you to build a static
library from these source files.

If another TLM component is generated
from the same model, these files are
regenerated (if the model has not
changed, the files will be identical). If
you generate a second TLM version of
the same model with a different tag the
TLM files are added to the _VP folder
with the new tag. It is possible for the
_VP folder to contain multiple TLM
variations of the same model all using
the same behavior files.

model_name_usertag_tlm include/model_name_usertag_tlm.h

src/model_name_usertag_tlm.cpp

include/model_name_usertag_tlm_def.h

These files contain the TLM interface to
wrap the core behavior.

This file contains addresses and
definitions to communicate with the
component through the TLM target port
using a TLM generic payload.
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Directory Name Files Description

The files are sorted in subdirectories by
source and header.

HDL Verifier provides a makefile for
you to build a static library from these
source files.

model_name_usertag_tlm_tb include/model_name_usertag _tlm_tb.h

src/model_name_usertag_

   tlm_tb.cpp

src/model_name_usertag_

   tlm_tb_main.cpp

These files contain the core behavior of
the test bench.

This file instantiates and binds the
component and the test bench together.

The files are sorted in subdirectories by
source and header.

HDL Verifier software provides
a makefile for you to build an
executable from these source file and
the component static library. This
executable requires the following:

• Certain MATLAB libraries the
executable needs to be built and
run. These MATLAB libraries
are the static libraries libmat.a
and libmx.a and their dynamic
counterparts.

• The vector .mat files generated
when you click the Verify TLM
Component button. Before building
the component and test bench on the
virtual platform, verify that the TLM
component includes these files.

model_name_usertag_tlm_doc/ html/model_name_codegen_rpt.html This file is the entry point of the HTML
documentation.
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Create Static Library with TLM Component

Create a static library that contains the generated TLM component by following the steps
described for Linux or Windows. Execute these steps for the operating system where you
will run the TLM component.

Linux Users

1 Open a Linux console window.
2 Navigate to the model_name_VP/model_name_usertag_tlm/ folder.
3 Execute the following command to start the library compilation:

make -f makefile.gnu all

If you want to obtain symbols for source code debugging, use the all-debug target
instead of all.

4 When the system finishes compiling, locate a library
file named libmodel_name_usertag_tlm.a in the
model_name_VP/model_name_usertag_tlm/lib/ folder.

Windows Users

If you have not already, make sure that MATLAB\version\bin\win32 or MATLAB
\version\bin\win64 has been added to your user path.

You can choose one of the following ways to compile your project:

• Compile in Visual Studio® (open the model_name_usertag_tlm.vcproj project in
Visual Studio and follow the application instructions for compiling your project).

• Compile in a console window.

1 Open a system console window.
2 Load the compilation tool chain by entering the following at the system prompt:

Win32 users:

X:\>"%VS80COMNTOOLS%\..\..\VC\vcvarsall" x86

Win64 users:

X:\>"%VS80COMNTOOLS%\..\..\VC\vcvarsall" x64
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If you have a later version of Visual Studio, you may need to enter
"%VS100COMNTOOLS%...", "%VS90COMNTOOLS%..." or "%VS80COMNTOOLS
%..." instead. Type set at the system prompt for a list of environment
variables; in that list you can find the environment variable pointing to where the
tool chain is installed.

3 In the same system console, navigate to the
model_name_VP/model_name_usertag_tlm/ folder.

4 Execute the following command to start the library compilation:

X:\>nmake /f makefile.mk all

If you want to obtain symbols for source code debugging, use the all-debug
target instead of all.

5 When the system finishes compiling, locate a library
file named model_name_usertag_tlm.lib in the
model_name_VP/model_name_usertag_tlm/lib/ folder.

Note: The temporary object files reside in the
model_name_VP/model_name_usertag_tlm/obj/ folder.

Create Standalone Executable with TLM Component

You can create a standalone TLM executable in the command shell by following the steps
for Linux or Windows. Execute these steps for the operating system where you will run
the TLM component.

Linux Users

1 Open a Linux console window.
2 Navigate to the model_name_VP/model_name_usertag_tlm_tb/ folder.
3 Execute the following command to start the library compilation:

make -f makefile_tb.gnu all

If you want to obtain symbols for source code debugging, use the all-debug target
instead of all.
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Note: Executing this command also automatically builds a static library with the
TLM component source files.

4 When the system finishes compiling, locate an executable
file named model_name_usertag_tlm_tb.exe in the
model_name_VP/model_name_usertag_tlm_tb/ folder.

Windows Users

If you have not already, make sure that MATLAB\version\bin\win32 or MATLAB
\version\bin\win64 has been added to your user path.

You can choose one of the following ways to compile your project:

• Compile in Visual Studio (open the model_name_usertag_tlm.vcproj project in
Visual Studio and follow the application instructions for compiling your project).

• Compile in a console window.

1 Open a system console window.
2 Load the compilation tool chain by entering the following at the system prompt:

Win32 users:

X:\>"%VS80COMNTOOLS%\..\..\VC\vcvarsall" x86

Win64 users:

X:\>"%VS80COMNTOOLS%\..\..\VC\vcvarsall" x64

If you have a later version of Visual Studio, you may need to enter
"%VS100COMNTOOLS%...", "%VS90COMNTOOLS%..." or "%VS80COMNTOOL
%..." instead. Type set at the system prompt for a list of environment
variables; in that list you can find the environment variable pointing to where the
tool chain is installed.

3 In the same system console, navigate to the
model_name_VP/model_name_usertag_tlm_tb/ folder.

4 Execute the following command to start the library compilation:

X:\>nmake /f makefile.mk all
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If you want to obtain symbols for source code debugging, use the all-debug
target instead of all.

Note: Executing this command also automatically builds a static library with the
TLM component source files.

5 When the system finishes compiling, locate an executable
file named model_name_usertag_tlm_tb.exe in the
model_name_VP/model_name_usertag_tlm_tb/ folder.
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TLM Component Constructor

The generated TLM component has the following constructor function prototype:
model_name_usertag_tlm(sc_core::sc_module_name module_name, ...

     eTimingType DefaultTiming = TIMED, 

   eModeType InputDefaultMode = AUTO, eModeType OutputDefaultMode = AUTO);

Where:

• module_name is a sc_core::sc_module_name type. It is a character vector that
contains the instance name.

• DefaultTiming is an eTimingType {TIMED, UNTIMED}. It determines whether the
TLM component is timed or untimed at the beginning of the SystemC simulation. By
default, the component initializes DefaultTiming to TIMED, but you can change it
to UNTIMED. Also during the simulation, you can change the TLM component timing
by calling the function SetTimingParam (eTimingType Type).

• InputDefaultMode is an eModeType { MANUAL,AUTO}. It determines whether
the TLM component input mode is manual or auto at the beginning of the SystemC
simulation (and also after SystemC resets the component). By default, the TLM
component initializes InputDefaultMode to AUTO, but you can change it to
MANUAL.

• OutputDefaultMode is an eModeType { MANUAL,AUTO}. It determines whether
the TLM component output mode is manual or auto at the beginning of the SystemC
simulation (and also after SystemC resets the component). By default, the TLM
component initializes OutputDefaultMode to AUTO, but you can change it to
MANUAL.
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TLM Component Generation

In this section...

“TLM Mapping” on page 24-2
“TLM Processing” on page 24-11
“TLM Timing” on page 24-20
“TLM Testbench” on page 24-24
“TLM Compilation” on page 24-29

TLM Mapping

TLM Generator Overview

The following user interface tabs contain the parameters for setting options on the
generated TLM component:

• TLM Mapping: Specify options for socket and memory mapping. See “Select TLM
Mapping Options” on page 21-7.

• TLM Processing: Specify options for algorithm and interface processing. See “Select
TLM Processing Options” on page 21-10.

• TLM Timing: Specify options for combined interface timing, or for individual timing
for input data, output data, and control sockets. See “Select TLM Timing Options” on
page 21-12.

• TLM Testbench: Specify options for the generation and runtime behavior of a
standalone SystemC/TLM component test bench. See “Select TLM Test Bench
Options” on page 21-13.

• TLM Compilation: Specify generated TLM component compilation options. See
“Select TLM Compilation Options” on page 21-15.

24-2



 TLM Component Generation

Socket Mapping

Choose the type of TLM socket for input data, output data, and control.

Settings

Default: One combined TLM socket for input data, output data, and control

• One combined TLM socket for input data, output data, and control: Create
one combined TLM socket in the generated TLM component.

• Three separate TLM socket for input data, output data, and control: Create
three separate TLM sockets. Generate each data socket with the following options:

• Auto-generated memory map (or without memory map)
• Command and status registers
• Test and set registers
• Tunable parameter registers

• Defined by imported IP-XACT file: Define the memory map for the TLM
component according to instructions in an IP-XACT file. When you select this option,
you must specify the IP-XACT file to use. See “Prepare IP-XACT File for Import” on
page 21-19.

Dependencies

This parameter enables Combined TLM Socket or TLM Socket for Input Data,
TLM Socket for Output Data, and TLM Socket for Control with Memory Map.

Setting this parameter to One combined TLM socket for input data, output
data, and control opens the Combined TLM Socket options selection.

Setting this parameter to Three separate TLM socket for input data, output
data, and control opens the TLM Socket for Input Data, TLM Socket for
Output Data, and TLM Socket for Control with Memory Map options selection.

Setting this parameter to Defined by imported IP-XACT file opens the Import
IP-XACT File options selection.

Command-Line Information
Parameter: tlmgComponentSocketMapping
Type: string
Value: |
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Default:
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Memory Map Type

Choose the type of addressing scheme for the combined TLM socket or the separate TLM
input data and output data sockets.

Settings

Default: No memory map

• No memory map: Create a single input register and a single output register in the
generated TLM component

• Auto-generate memory map: Create a single input address and a single output
address for all inputs and outputs or create a separate input register for every input
signal and a separate output register for every output signal

Dependencies

This parameter enables Auto-Generated memory map Type.

Setting this parameter to Auto-generate memory map opens the Auto-Generated
Memory Map Type options selection.

Command-Line Information
Parameter: tlmgComponentAddressing (for combined TLM socket)|
tlmgComponentAddressingInput | tlmgComponentAddressingOutput
Type: string
Value: 'No memory map' | 'Auto-generated memory map'
Default: 'No memory map'

See Also

“Memory Mapping” on page 19-4
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Auto-Generated Memory Map Type

Choose the type of addressing scheme to be automatically generated.

Settings

Default: Single input and output address offsets

• Single input and output address offsets: Create a single address offset for the
inputs and a single address offset for the outputs

• Individual input and output address offsets: Generate an address for each input
and each output

Dependencies

Auto-Generated memory map enables this parameter.

Command-Line Information
Parameter: tlmgAutoAddressSpecType (for combined TLM socket) |
tlmgAutoAddressSpecTypeInput | tlmgAutoAddressSpecTypeOutput
Type: string
Value: 'Single input and output address offsets' | 'Individual input
and output address offsets'

Default: 'Single input and output address offsets'

See Also

“Memory Mapping” on page 19-4
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Import IP-XACT File

Define the memory map of the TLM component from an imported file.

Settings

Default: No file specified, no SCML implementation

• IP-XACT file: Specify a file that defines the memory map for the TLM component, in
IP-XACT format.

• Generate code for unmapped IP-XACT registers/bitfields: Include registers
without socket mapping in the generated TLM component.

• Implement memory map with SCML: Generate an interface compatible with the
System C Modeling Library (SCML). See “Implement Memory Map with SCML” on
page 21-31.

Dependencies

When you select Implement memory map with SCML, also set path variables for the
SCML libraries on the TLM Compilation tab. When you select Implement memory
map with SCML, the Algorithm Step Function Execution option on the TLM
Processing tab is set to SystemC Thread.

Command-Line Information
Parameter: tlmgIPXACTPath
Type: string
Value:
Default:
Parameter: tlmgIPXactUnmapped
Type: string
Value: 'on' | 'off'
Default: 'off'
Parameter: tlmgSCMLOnOff
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Memory Mapping” on page 19-4
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Include a command and status register in the memory map

Allows an initiator to send the TLM component commands such as "reset" and "start", as
well as read status bits such as "interrupt active", "output buffer overflowed", and "input
buffer empty".

Settings

Default: On

 On
Include a command and status register in the memory map

 Off
Do not include a command and status register in the memory map

Dependencies

If you selected a combined TLM socket, Auto-Generated Memory Map enables this
parameter.

If you selected Separate TLM sockets, this parameter is automatically enabled for the
control TLM socket.

Command-Line Information
Parameter:tlmgCommandStatusRegOnOff
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Command and Status Register” on page 19-9
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Include a test and set register in the memory map

Provides a means of controlling access to a shared TLM target device in your SystemC
environment.

Settings

Default: Off

 On
Include a test and set register in the memory map. Any read of this register will
return the current value and set the register to a new, asserted value in an atomic
operation.

 Off
Do not include a test and set register in the memory map

Dependencies

If you selected a combined TLM socket, Auto-Generated Memory Map enables this
parameter.

If you selected separate TLM sockets, this parameter is automatically enabled for the
control TLM socket.

Command-Line Information
Parameter: tlmgTestAndSetRegOnOff
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Test and Set Register” on page 19-16
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Include tunable parameter registers in the memory map

The read/write tunable parameter registers are used by the initiator to change the values
of the algorithm tunable parameters.

Settings

Default: On

 On
Include tunable parameter registers in the memory map

 Off
Do not include tunable parameter registers in the memory map

Dependencies

If you selected a combined TLM socket, Auto-Generated Memory Map enables this
parameter.

If you selected separate TLM sockets, this parameter is automatically enabled for the
control TLM socket.

Command-Line Information
Parameter: tlmgTunableParamRegOnOff
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Memory Map Configuration” on page 21-8
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TLM Processing

Algorithm Step Function Execution

Choose the type of function execution trigger you want to use in the generated TLM
component.

Settings

Default: SystemC Thread

• SystemC Thread: Event triggers system scheduler to execute function
• Callback: Function is executes as soon as input buffer is full or command is written

to command register

Command-Line Information
Parameter: tlmgAlgorithmProcessingType
Type: string
Value: 'SystemC Thread' | 'Callback'
Default: 'SystemC Thread'

See Also

“Select TLM Processing Options” on page 21-10
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Algorithm step function timing (ns)

Specify the time in nanoseconds for modeling the algorithm execution time in the TLM
environment.

Settings

Default: 100

Command-Line Information
Parameter: tlmgAlgorithmProcessingTime
Type: int
Value:
Default: 100

See Also

“Select TLM Processing Options” on page 21-10
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Enable temporal decoupling for loosely-timed simulation

Quantum allows loosely-timed simulation.

Note: This option will be removed in a future release. Generate your TLM component
with the default settings instead.

Settings

Default: Off

 On
Enable quantum for loosely-timed simulation. Allows you to specify the duration
of the time quantum allocated to the generated TLM component in your system
simulation.

 Off
Do not enable quantum

Dependencies

This parameter enables Maximum quantum for loosely-timed components (ns).

Command-Line Information
Parameter: tlmgTempDecouplOnOff
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Temporal Decoupling” on page 19-19
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Maximum quantum for loosely-timed components (ns)

Specify the time at which point temporally-decoupled components are forced to
synchronize.

Note: This option will be removed in a future release. Generate your TLM component
with the default settings instead.

Settings

Default: 1000

Dependencies

Enable quantum for loosely-timed simulation enables this parameter.

Command-Line Information
Parameter: tlmgQuantumTime
Type: int
Value:
Default: 1000

See Also

“Temporal Decoupling” on page 19-19
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Enable payload buffering

Payload buffering allows for initiators to write multiple input data sets for the algorithm
step function and for the storage of multiple output data sets.

Note: This option will be removed in a future release. Generate your TLM component
with the default settings instead. You can manually add a buffer to your SystemC
environment if necessary.

Settings

Default: Off

 On
Enable payload buffering. Enabling payload buffering allows for a different sample
rate than was used in the original Simulink model.

 Off
Do not enable payload buffering

Dependencies

This parameter enables Payload input buffer depth and Payload output buffer
depth.

Note: This option will be removed in a future release. Generate your TLM component
with the default settings instead. You can manually add a buffer to your SystemC
environment if necessary.

Command-Line Information
Parameter: tlmgPayloadBufferingOnOff
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

Buffering on page 19-17
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Payload input buffer depth

Choose the maximum number of possible outstanding input data sets before triggering
algorithm execution.

Note: This option will be removed in a future release. Generate your TLM component
with the default settings instead. You can manually add a buffer to your SystemC
environment if necessary.

Settings

Default: 1

Dependencies

Enable payload buffering enables this parameter.

Command-Line Information
Parameter: tlmgPayloadInBufferDepth
Type: int
Value:
Default: 1

See Also

Buffering on page 19-17
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Payload output buffer depth

Choose the maximum number of possible outstanding output data sets after triggering
algorithm execution.

Note: This option will be removed in a future release. Generate your TLM component
with the default settings instead. You can manually add a buffer to your SystemC
environment if necessary.

Settings

Default: 1

Dependencies

Enable payload buffering enables this parameter.

Command-Line Information
Parameter: tlmgPayloadOutBufferDepth
Type: int
Value:
Default: 1

See Also

Buffering on page 19-17
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Create an interrupt request port on the generated TLM component

Specify that an interrupt signal be added to the generated TLM component.

Settings

Default: Off

 On
Create an interrupt request port on the generated TLM component. This signal will
be asserted whenever new outputs are available in the output register(s) and will be
automatically cleared whenever any value is read from the output register(s).

 Off
Do not create an interrupt request port on the generated TLM component

Command-Line Information
Parameter: tlmgIrqPortOnOff
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Interrupt” on page 19-16
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TLM Timing

Single write transfer or the first write transfer in a burst transaction (ns)

Specify the time in nanoseconds for the TLM component to execute a single write
transfer or the first write transfer in a burst transaction.

Settings

Default: 10

Command-Line Information
Parameter: tlmgFirstWriteTime (for combined TLM socket) |
tlmgFirstWriteTimeInput | tlmgFirstWriteTimeCtrl
Type: int
Value:
Default: 10

See Also

“Select TLM Timing Options” on page 21-12
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Subsequent write transfers in a burst transaction (ns)

Specify the time in nanoseconds for the TLM component to execute a subsequent write
transfer in a burst transaction.

Settings

Default: 10

Command-Line Information
Parameter: tlmgSubsequentWritesInBurstTime (for combined
TLM socket) | tlmgSubsequentWritesInBurstTimeInput |
tlmgSubsequentWritesInBurstTimeCtrl

Type: int
Value:
Default: 10

See Also

“Select TLM Timing Options” on page 21-12

24-21



24 Configuration Parameters for TLM Generator Target

Single read transaction or the first read transfer in a burst transaction (ns)

Specify the time in nanoseconds for the TLM component to execute a single read
transaction or the first read transaction in a burst transaction.

Settings

Default: 10

Command-Line Information
Parameter: tlmgFirstReadTime (for combined TLM socket) |
tlmgFirstReadTimeOutput | tlmgFirstReadTimeCtrl
Type: int
Value:
Default: 10

See Also

“Select TLM Timing Options” on page 21-12
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Subsequent read transfers in a burst transaction (in ns)

Specify the time in nanoseconds for the TLM component to execute a subsequent read
transfer in a burst transaction.

Settings

Default: 10

Command-Line Information
Parameter: tlmgSubsequentReadsInBurstTime (for combined
TLM socket) | tlmgSubsequentReadsInBurstTimeOutput |
tlmgSubsequentReadsInBurstTimeCtrl

Type: int
Value:
Default: 10

See Also

“Select TLM Timing Options” on page 21-12
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TLM Testbench

Generate testbench

Generate a standalone SystemC test bench in order to verify the generated TLM
component using the same input stimulus as used in Simulink.

Settings

Default: On

 On
Generate test bench for TLM component

 Off
Do not generate test bench

Dependencies

This parameter enables all other parameters on this tab.

Command-Line Information
Parameter: tlmgGenerateTestbench
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Testing TLM Components” on page 22-2
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Generate verbose messages during testbench execution

Generate verbose messages during test bench execution.

Settings

Default: Off

 On
Test bench generates verbose runtime messages

 Off
Test bench does not generate verbose messages

Dependencies

Generate testbench enables this parameter.

Command-Line Information
Parameter: tlmgVerboseTbMessagesOnOff
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Select TLM Test Bench Options” on page 21-13
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Run-time timing mode

Specify the timing mode to be used by the generated test bench and TLM component.

Settings

Default: With timing

• With timing: The target annotates TLM component transactions with delays and
the initiator will honor them. When a quantum keeper is not used (see “Temporal
Decoupling” on page 19-19), the initiator synchronizes immediately following the
transaction execution. When a quantum keeper is used, the initiator utilizes temporal
decoupling and does not synchronize to the annotated delays until the quantum is
reached.

• Without timing: The target does not annotate TLM component transaction with any
delays. The initiator and target only perform synchronization using zero-time wait
calls.

Dependencies

Generate testbench enables this parameter.

Command-Line Information
Parameter: tlmgRuntimeTimingMode
Type: string
Value: 'With timing' | 'Without timing'
Default: 'With timing'

See Also

“Select TLM Test Bench Options” on page 21-13
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Input buffer triggering mode

Specify when data is moved from the input register to the execution buffer. In your TLM
environment, this specification is done via a runtime configuration command and can be
changed dynamically throughout simulation.

Settings

Default: Automatic

• Automatic: The TLM component automatically moves input data sets from the input
registers to the input buffer.

• Manual: The initiator must explicitly write a command to the command and status
register in order to move the input data set from the register to the input buffer.

Dependencies

The following parameters must each be selected to enable the Input buffer triggering
mode parameter:

• Include a command and status register in the memory map: Must be selected.
• Generate testbench: Must be selected.

Command-Line Information
Parameter: tlmgInputBufferTriggerMode
Type: string
Value: 'Automatic' | 'Manual'
Default: 'Automatic'

See Also

“Select TLM Test Bench Options” on page 21-13
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Output buffer triggering mode

Specify when data is moved from the results buffer to the output register. In your TLM
environment, this specification is done via a runtime configuration command and can be
changed dynamically throughout simulation.

Settings

Default: Automatic

• Automatic: The TLM component automatically moves output data sets from the
output buffer to the output registers.

• Manual: The initiator must explicitly write a command to the command and status
register in order to move the output data set from the output buffer to the output
registers.

Dependencies

The following parameters must each be selected to enable the Input buffer triggering
mode parameter:

• Include a command and status register in the memory map: Must be selected.
• Generate testbench: Must be selected.

Command-Line Information
Parameter: tlmgOutputBufferTriggerMode
Type: string
Value: 'Automatic' | 'Manual'
Default: 'Automatic'

See Also

“Select TLM Test Bench Options” on page 21-13
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TLM Compilation
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SystemC include path

Specify the SystemC include path. This string is written directly into the generated
makefiles. The default is chosen such that if your define the environment variable you
should be able to update your SystemC/TLM installation without having to update your
Simulink models.

Settings

Default: $(SYSTEMC_INC_PATH)

Command-Line Information
Parameter: tlmgSystemCIncludePath
Type: string
Value:
Default: '$(SYSTEMC_INC_PATH)'

See Also

“Select TLM Compilation Options” on page 21-15
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SystemC library path

Specify the location of the library directory in your SystemC installation. This string
is written directly into the generated makefiles. The default is chosen such that if
your define the environment variable you should be able to update your SystemC/TLM
installation without having to update your Simulink models.

Settings

Default: $(SYSTEMC_LIB_PATH)

Command-Line Information
Parameter: tlmgSystemCLibPath
Type: string
Value:
Default: '$(SYSTEMC_LIB_PATH)'

See Also

“Select TLM Compilation Options” on page 21-15
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SystemC library name

Specify the name of the SystemC library in your SystemC installation. This string is
written directly into the generated makefiles. The default is chosen such that if your
define the environment variable you should be able to update your SystemC/TLM
installation without having to update your Simulink models.

Settings

Default: $SYSTEMC_LIB_NAME)

Command-Line Information
Parameter: tlmgSystemCLibName
Type: string
Value:
Default: '$(SYSTEMC_LIB_NAME)'

See Also

“Select TLM Compilation Options” on page 21-15
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TLM include path

Specify the location of the TLM include directory in your TLM installation. This string
is written directly into the generated makefiles. The default is chosen such that if
your define the environment variable you should be able to update your SystemC/TLM
installation without having to update your Simulink models.

Settings

Default: $(TLM_INC_PATH)

Command-Line Information
Parameter: tlmgTLMIncludePath
Type: string
Value:
Default: '$(TLM_INC_PATH)'

See Also

“Select TLM Compilation Options” on page 21-15
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SCML include path

Specify the SCML include path. This string is written directly into the generated
makefiles. The default is chosen such that if you define the environment variable you
should be able to update your SCML installation without having to update your Simulink
models.

Settings

Default: $(SCML_INC_PATH)

Command-Line Information
Parameter: tlmgSCMLIncludePath
Type: string
Value:
Default: '$(SCML_INC_PATH)'

See Also

“Select TLM Compilation Options” on page 21-15
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SCML library path

Specify the SCML library path. This string is written directly into the generated
makefiles. The default is chosen such that if you define the environment variable you
should be able to update your SCML installation without having to update your Simulink
models.

Settings

Default: $(SCML_LIB_PATH)

Command-Line Information
Parameter: tlmgSCMLLibPath
Type: string
Value:
Default: '$(SCML_LIB_PATH)'

See Also

“Select TLM Compilation Options” on page 21-15
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SCML library name

Specify the SCML library name. This string is written directly into the generated
makefiles. The default is chosen such that if you define the environment variable you
should be able to update your SCML installation without having to update your Simulink
models.

Settings

Default: $(SCML_LIB_NAME)

Command-Line Information
Parameter: tlmgSCMLLibName
Type: string
Value:
Default: '$(SCML_LIB_NAME)'

See Also

“Select TLM Compilation Options” on page 21-15
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SCML logging library name

Specify the name of the SCML logging library. This string is written directly into the
generated makefiles. The default is chosen such that if you define the environment
variable you should be able to update your SCML installation without having to update
your Simulink models.

Settings

Default: $(SCML_LOGGING_LIB_NAME)

Command-Line Information
Parameter: tlmgSCMLLoggingLibName
Type: string
Value:
Default: '$(SCML_LOGGING_LIB_NAME)'

See Also

“Select TLM Compilation Options” on page 21-15
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Operating System

Specify the target operating system for the generated TLM code.

Settings

Default: 'Current Host'

Command-Line Information
Parameter: tlmgTargetOSSelect
Type: string
Value: 'Current Host' | 'Linux 64' | 'Windows 64'
Default: 'Current Host'

See Also

“Select TLM Compilation Options” on page 21-15

Toolchain

Specify a compiler from the drop-down list. The available options list the compiler
versions installed on your computer; the default option is the version most recently
installed.

Settings

Available options are compiler versions installed on your computer; default option is
version most recently installed.

Command-Line Information
Parameter: tlmgCompilerSelect
Type: string
Value:
Default: Linux — GCC, Windows — Visual Studio 20XX, where XX is the version
most recently installed.

See Also

“Select TLM Compilation Options” on page 21-15
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User-defined tag for TLM component names

Add additional text to your TLM component class name identifier, the input and output
data structures, and the directory to place the generated code.

Settings

No Default

Command-Line Information
Parameter: tlmgUserTagForNaming
Type: string
Value:
Default:

See Also

“Select TLM Compilation Options” on page 21-15
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DPI-C Component Generation with MATLAB

You can export a MATLAB function as a component with a direct programming interface
(DPI) for use in a SystemVerilog simulation. Wrap generated C code with a DPI wrapper
that communicates with a SystemVerilog thin interface function in a SystemVerilog
simulation.

For MATLAB, you generate the component using the dpigen function.

Note: You must have a MATLAB Coder license to use this feature.

Supported MATLAB Data Types

Supported MATLAB data types are converted to SystemVerilog data types, as shown in
the following table.

MATLAB SystemVerilog

uint8 byte unsigned

uint16 shortint unsigned

uint32 int unsigned

uint64 longint unsigned

int8 byte

int16 shortint

int32 int

int64 longint

single shortreal

double real

logical bit

fi (fixed-point data type) Depends on the fixed point word length.
If the fixed point word length is greater
than the host word size (for example, 64-
bit vs. 32-bit), then this data type cannot be
converted to a SystemVerilog data type by
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MATLAB SystemVerilog

MATLAB Coder and you will get an error.
If the fixed point word length is less than
or equal to the host word size, MATLAB
Coder converts the fixed-point data type to
a built-in C type.

complex The coder flattens complex signals into real
and imaginary parts in the SystemVerilog
component.

vectors, matrices arrays

For example, a 4-by-2 matrix in MATLAB
is converted into a one-dimensional array
of 8 elements in SystemVerilog.

structure The coder flattens structure elements
into separate ports in the SystemVerilog
component.

Generated Shared Library

Function dpigen automatically compiles the shared library needed to run the exported
DPI-C component in the SystemVerilog environment. The makefile that builds the
shared library has the extension _rtw.mk. For example, for fun.m, the make file name is
fun_rtw.mk.

During compilation, the function dpigen generates a library file.

• Windows 64: function_win64.dll
• Linux: function.so

function is the name of the MATLAB function you generated the DPI-C component
from.

Note: If you use 64-bit MATLAB on Windows, you get a 64-bit DLL, which can be used
only with a 64-bit HDL simulator.

Make sure that your MATLAB version matches your HDL simulator version.

25-3



25 DPI Component Generation for MATLAB Function

Generated Test Bench

Function dpigen also creates a test bench. You can use this test bench to verify that the
generated SystemVerilog component is functionally equivalent to the original MATLAB
function. The generator runs your MATLAB code to save input and output data vectors
for use in the test bench. This test bench is not intended as a replacement for a system
test bench for your own application. However, you can use the generated test bench as a
starting example when creating your own system test bench.

Generated Outputs

• C and header files from your algorithm, generated by MATLAB Coder
• C and header files for the DPI wrapper, generated by HDL Verifier
• SystemVerilog file that exposes the component and adds control signals
• SystemVerilog test bench (with the -testbench option)
• Data files used with the HDL simulator (with the -testbench option)
• HDL simulator scripts, such as *.do or *.sh (with the -testbench option)
• Makefile *.mk

Generated SystemVerilog Wrapper

All SystemVerilog code generated by function dpigen contains a set of control signals
and the Initialize function.
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Generated Control Signals

• clk: synchronization clock
• clk_enable: clock enable
• reset: asynchronous reset

Generated Initialize Function

The Initialize function is called at the beginning of the simulation.

For example:

 import "DPI-C" function void DPI_Subsystem_initialize();

If the asynchronous reset signal is high (goes from 0 to 1), Initialize is called again.

Limitations

• Variable-sized arguments are not supported.
• Large fixed-point numbers that exceed the system word length are not supported.
• Some optimizations, such as constant folding, are not supported because they change

the interface of the generated C function. For more information, see “MATLAB Coder
Optimizations in Generated Code” (Fixed-Point Designer).

• HDL Verifier limits matrices and vectors to one-dimensional arrays in SystemVerilog.
For example, a 4-by-2 matrix in MATLAB is converted to a one-dimensional array of 8
elements in SystemVerilog.

• The PostCodegen callback in config objects is not supported.

Related Examples
• “Create MATLAB Function and Test Bench” on page 26-2
• “Generate SystemVerilog DPI Component” on page 26-4
• “Run Generated Test Bench in HDL Simulator” on page 26-8
• “Use Generated DPI-C Functions in SystemVerilog” on page 26-10
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Generate DPI Component Using MATLAB

In this section...

“Create MATLAB Function and Test Bench” on page 26-2
“Generate SystemVerilog DPI Component” on page 26-4
“Run Generated Test Bench in HDL Simulator” on page 26-8
“Use Generated DPI-C Functions in SystemVerilog” on page 26-10
“Port Generated Component and Test Bench to Linux” on page 26-11

Create MATLAB Function and Test Bench

• “Create MATLAB Function” on page 26-2
• “Create Test Bench” on page 26-3
• “Run Test Bench” on page 26-3

Create MATLAB Function

Code the MATLAB function you want to export to a SystemVerilog environment. For
information about coding MATLAB functions, see "Function Basics" in the MATLAB
documentation.

Consider adding the compilation directive %#codegen to your function. This directive
can help you diagnose and fix violations that would result in errors during code
generation. See “Compilation Directive %#codegen” (MATLAB Coder).

While you code your function, keep in mind the “Limitations” on page 27-8, which
describe the various aspects of DPI component generation that you must know. These
aspects include which data types are valid, what files are generated, and how the shared
libraries are compiled.

In this example, the MATLAB function fun.m takes a single input and multiplies it by 2.
The function includes the compilation directive %#codegen.

function y = fun(x);

%#codegen

y = x * 2;
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The process of creating the MATLAB includes writing the code, creating the test bench,
and running the test bench in an iterative process. When you are satisfied that your
function does what you intend it to do, continue on to “Generate SystemVerilog DPI
Component” on page 26-4.

Create Test Bench

Create a test bench to exercise the function. In this example, the test bench applies a test
vector against fun.m and plots the output.

function sample=fun_tb

% Testbench should not require input, however you can give an output.

% Define a test vector 

tVecIn = [1,2,3,4,5];

% Exercise fun.m and plot results to make sure function is working correctly

tVecOut = arrayfun(@(in) fun(in),tVecIn);

plot(tVecIn,tVecOut);

grid on;

% Get my sample input to use it with function dpigen.

sample = tVecIn(1);

Note that a test bench should not have inputs. The test bench can load test vectors using
MAT files or any other data file, so it does not require inputs.

The output of fun_tb, sample, is going to be used as the function inputs argument for
fun.m during the call to dpigen, which is why it is a single element. See “Generate
SystemVerilog DPI Component” on page 26-4.

Run Test Bench

fun_tb

ans =

     1
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Next, generate the SystemVerilog DPI component. See “Generate SystemVerilog DPI
Component” on page 26-4.

Generate SystemVerilog DPI Component

• “Generate DPI Component with dpigen Function” on page 26-4
• “Examine Generated Component” on page 26-6
• “Examine Generated Test Bench” on page 26-6

Generate DPI Component with dpigen Function

Use the function dpigen to generate the DPI component. This function has several
optional input arguments. At a minimum, specify the MATLAB function you want to
generate a component for and the function inputs. If you also want to generate a test
bench to exercise the generated component, use the -testbench option.
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dpigen func -args input_arg -testbench test_bench_name 

1 Define the inputs as required by the function. In this example, sample is a scalar
value of type double.

sample = 1;

2 Call the DPI component generator function:

dpigen fun -args sample -testbench fun_tb 

The command, issued as shown, performs the following tasks:

• Generates a SystemVerilog component for the function fun.m. The function
inputs for fun.m are specified in sample.

• Creates a test bench for the generated component.

For this call to dpigen, MATLAB outputs the following messages:
### Generating DPI-C Wrapper fun_dpi.c

### Generating DPI-C Wrapper header file fun_dpi.h

### Generating SystemVerilog module fun_dpi.sv

### Generating makefiles for: fun_dpi

### Generating SystemVerilog test bench fun_tb_sv

### Generating test bench simulation script for Mentor Graphics ModelSim/QuestaSim run_tb_mq.do

### Generating test bench simulation script for Cadence Incisive run_tb_ncsim.sh

### Generating test bench simulation script for Synopsys VCS run_tb_vcs.sh

The function shown in the previous example generates the following folders and files:
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Examine Generated Component

Examine the generated component so that you can understand how the dpigen function
converted MATLAB code to SystemVerilog code. For more information on what the
function includes, see “Generated SystemVerilog Wrapper” on page 27-3.

This example shows the code generated for fun_dpi.sv.
// File: C:\Work\dpicml\codegen\dll\fun\fun_dpi.sv

// Created: 2014-04-30 14:48:07

// Generated by MATLAB 8.4 and HDL Verifier 4.5

`timescale 1ns / 1ns

module fun_dpi(

    input clk,

    input clk_enable,

    input reset,

    input real x,

output real y

);

    // Declare imported C functions

    import "DPI-C" function void DPI_fun_initialize();

    import "DPI-C" function void DPI_fun(input real x,output real y);

    initial begin

        DPI_fun_initialize();

    end

    always @(posedge clk or posedge reset) begin

        if(reset == 1'b1) begin

            DPI_fun_initialize();

        end

        else if(clk_enable) begin

            DPI_fun(x,y);

        end

    end

endmodule

Examine Generated Test Bench

Examine the generated test bench so you can see how function dpigen created this test
bench from the MATLAB code. For more information on the generated test bench, see
“Generated Test Bench” on page 25-4.

This example shows the code generated for fun_tb.sv.
// File: /codegen/dll/fun/dpi_tb/fun_tb.sv

// Created: 2014-04-22 21:16:29

// Generated by MATLAB 8.4 and HDL Verifier 4.5

'timescale 1ns / 1ns

module fun_tb;

    real x;

    real y;

    real y_read;

26-6



 Generate DPI Component Using MATLAB

    real y_ref;

    // File Handles

    integer fid_x;

    integer fid_y;

    // Other test bench variables

    bit clk;

    bit clk_enable;

    bit reset;

    integer fscanf_status;

    reg testFailure;

    reg tbDone;

    bit[63:0] real_bit64;

    bit[31:0] shortreal_bit64;

    parameter CLOCK_PERIOD= 10;

    parameter CLOCK_HOLD= 2;

    parameter RESET_LEN= 2*CLOCK_PERIOD+CLOCK_HOLD;

    // Initialize variables

    initial begin

        clk = 1;

        clk_enable = 0;

        testFailure = 0;

        tbDone = 0;

        reset = 1;

        fid_x = $fopen("dpig_in1.dat","r");

        fid_y = $fopen("dpig_out1.dat","r");

        #RESET_LEN reset = 0;

    end

    // Clock

    always #(CLOCK_PERIOD/2) clk = ~ clk;

    always@(posedge clk) begin

    if (reset == 0) begin

        #CLOCK_HOLD

        clk_enable <= 1;

        fscanf_status = $fscanf(fid_x, "%h", real_bit64);

        x = $bitstoreal(real_bit64);

        if ($feof(fid_x)) 

            tbDone = 1;

        fscanf_status = $fscanf(fid_y, "%h", real_bit64);

        y_read = $bitstoreal(real_bit64);

        if ($feof(fid_y)) 

            tbDone = 1;

        y_ref <= y_read;

        if (tbDone == 1) begin

            if (testFailure == 0) 

                $display

                   ("**************TEST COMPLETED (PASSED)**************");

            else

                $display

                   ("**************TEST COMPLETED (FAILED)**************");

            $finish;

        end

        if (clk_enable == 1) begin

            assert

            ( ((y_ref - y) < 2.22045e-16) && ((y_ref - y) > -2.22045e-16) ) 

        else begin

            testFailure = 1;

            $display("ERROR in output y_ref at time %0t :", $time);

            $display("Expected %e; Actual %e; Difference %e", y_ref, y, y_ref-y);

           end

        end

    end

end
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    // Instantiate DUT

    fun_dpi u_fun_dpi(

    .clk(clk),

    .clk_enable(clk_enable),

    .reset(1'b0),

    .x(x),

    .y(y)

    );

endmodule

Next, run the generated test bench in the HDL simulator. See “Run Generated Test
Bench in HDL Simulator” on page 26-8. If you plan to port the component and
optional test bench from Windows to Linux, see “Port Generated Component and Test
Bench to Linux” on page 26-11.

Run Generated Test Bench in HDL Simulator

• “Run Test Bench in ModelSim and QuestaSim Simulators” on page 26-8
• “Run Test Bench in Incisive Simulator” on page 26-9
• “Run Test Bench in VCS Simulator” on page 26-10

This section includes instructions for running the generated test bench in one
of the supported HDL simulators: Mentor Graphics ModelSim and QuestaSim,
Cadence Incisive, and Synopsys VCS®. It is possible that this code will work in other
(unsupported) HDL simulators but it is not guaranteed.

Choose the workflow for your HDL simulator.

Run Test Bench in ModelSim and QuestaSim Simulators

1 Start ModelSim or QuestaSim in GUI mode.
2 Change your current directory to the dpi_tb folder under the code generation

directory in MATLAB.
3 Enter the following command in the shell to start your simulation:

do run_tb_mq.do

This generated script contains the name of the component and test bench, and
instructions to the HDL simulator for running the test bench.

When the simulation finishes, you should see the following text displayed in your
console:

**************TEST COMPLETED (PASSED)**************
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This message tells you that the test bench was run against the generated component
successfully.

The following wave form image from this example demonstrates that the generated test
bench was successfully exercised in the HDL simulator.

Next, import your component. See “Use Generated DPI-C Functions in SystemVerilog” on
page 26-10.

Run Test Bench in Incisive Simulator

1 Launch Incisive.
2 Start your terminal shell.
3 Change the current directory to dpi_tb under the code generation directory in

MATLAB.
4 Enter the following command in the shell to start the simulation:

sh run_tb_ncsim.sh
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This generated script contains the name of the component and test bench, and
instructions to the HDL simulator for running the test bench.

When the simulation finishes, you should see the following text displayed in your
console:

**************TEST COMPLETED (PASSED)**************

This message tells you that the test bench was run against the generated component
successfully.

Run Test Bench in VCS Simulator

1 Launch VCS.
2 Start your terminal shell.
3 Change the current directory to dpi_tb under the code generation directory in

MATLAB.
4 Enter the following command in your shell to start the simulation:

sh run_tb_vcs.sh

This generated script contains the name of the component and test bench, and
instructions to the HDL simulator for running the test bench.

When the simulation finishes, you should see the following text displayed in your
console:

**************TEST COMPLETED (PASSED)**************

This message tells you that the test bench was run against the generated component
successfully.

Use Generated DPI-C Functions in SystemVerilog

To use the generated DPI component in a SystemVerilog environment, first you must
import the generated functions with “DPI” declarations within your SystemVerilog
module.  Then, you must call the generated functions. When you compile the
SystemVerilog code that contains the imported generated functions, use a DPI-
aware SystemVerilog compiler and specify the component file names along with the
SystemVerilog code.
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The following example demonstrates adding the generated DPI component for fun.m to a
SystemVerilog module.

1 Explicitly import the generated functions.

// Declare imported C functions

import "DPI-C" function void DPI_fun_initialize();

import "DPI-C" function void DPI_fun(input real x, output real y);

2 Next, call the Initialize function.

DPI_fun_initialize();

3 Call the function generated from fun.m.

DPI_fun(x,y);

You can now modify the generated code as needed.

Example

// Declare imported C functions

import "DPI-C" function void DPI_fun_initialize();

import "DPI-C" function void DPI_fun(input real x, output real y);

module test_twofun_tb;

 initial begin

  DPI_fun_initialize();

 end

 always@(posedge clk) begin

  #1

  DPI_fun(x,y);

 end

Port Generated Component and Test Bench to Linux

To port the component and optional test bench from a Windows operating system to a
Linux operating system, follow these instructions.

Note: You must have an Embedded Coder license for the Windows to Linux port.
Although it is possible the port will work without the Embedded Coder license, that
usage is not supported.
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• “Step 1. Tasks on the Windows Host Machine” on page 26-12
• “Step 2. Tasks on the Linux Target Machine” on page 26-12

Step 1. Tasks on the Windows Host Machine

1 Create a MATLAB Coder config object. Change the target HW device type to LP64
for the Linux operating system.
cfg=coder.config('dll');

cfg.HardwareImplementation.TargetHWDeviceType='Generic->64-bit Embedded Processor (LP64)';

2 Run the dpigen command using option -config to use the config object that you
created in step 1. Use option -c so that function dpigen generates only code. For
example:
dpigen -config cfg DataTypes.m -args InputSample –c

3 To generate a zip file to port to Linux, change folder to the source folder (where
the buildInfo.mat file is generated), and execute the following commands at the
command prompt:
load buildInfo

buildInfo.packNGo()

4 To copy the file for porting, return to the top level folder. Find the zip file generated
in the previous step (same name as the MATLAB function). Copy the zip file to the
Linux machine.

Step 2. Tasks on the Linux Target Machine

1 Unzip the file using the -j option to extract all the files with a flattened folder
structure. You can unzip into any folder. For example:

unzip -j  DataTypes.zip

2 a Copy this generic makefile script into an empty file:
SRC=$(wildcard *.c)

OBJ=$(SRC:.c=.o)

SHARE_LIB_NAME=DPI_Component.so

all: $(SRC) $(SHARE_LIB_NAME)

 @echo "### Successfully generated all binary outputs."

$(SHARE_LIB_NAME): $(OBJ)

 gcc -shared -lm $(OBJ) -o $@

.c.o:

 gcc -c -fPIC -Wall -ansi -pedantic -Wno-long-long -fwrapv -O0 $< -o $@

b Replace DPI_Component.so with the name of the shared library you want to
create.
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c Save the script as Porting_DPIC.mk in the folder where the zip files were
extracted.

3 Build the shared library with the following command:

make -f Porting_DPIC.mk all

To use the generated component with SystemVerilog, see “Use Generated DPI-C
Functions in SystemVerilog” on page 26-10.

4 (Optional) Run the test bench that was automatically generated in Windows.

a Copy the contents of the dpi_tb folder from the Windows host machine to the
Linux target machine.

b Run the test bench.

To run the test bench in an HDL simulator, see “Run Generated Test Bench in HDL
Simulator” on page 26-8.
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DPI-C Component Generation with Simulink

In this section...

“DPI-C Generation Overview” on page 27-2
“Supported Simulink Data Types” on page 27-3
“Generated SystemVerilog Wrapper” on page 27-3
“Customization” on page 27-7
“Limitations” on page 27-8

DPI-C Generation Overview

If you have a Simulink Coder license, you can generate SystemVerilog DPI-C components
using one of two methods.

Export SystemVerilog DPI-C Component for Subsystem

HDL Verifier integrates with Simulink Coder to export a subsystem as generated C code
inside a SystemVerilog component with a Direct Programming Interface (DPI). You can
integrate this component into your HDL simulation as a behavioral model. The coder
provides options to customize the generated SystemVerilog structure. The component
generator supports test point access and tunable parameters. The coder optionally
generates a SystemVerilog test bench that verifies the generated DPI-C component
against data vectors from your Simulink subsystem. This feature is available in the
Model Configuration Parameters dialog box, under Code Generation. See “Generate
SystemVerilog DPI-C Component” on page 28-2.

Generate SystemVerilog DPI-C Test Bench in HDL Coder

If you have an HDL Coder license, you can generate a SystemVerilog DPI-C test
bench. Use the test bench to verify your generated HDL code using C code generated
from your entire Simulink model, including the DUT and data sources. To use this
feature, your entire model must support C code generation with Simulink Coder. You
can access this feature in HDL Workflow Advisor under HDL Code Generation
> Set Testbench Options, or in the Model Configuration Parameters dialog box,
under HDL Code Generation>Test Bench. Or, for command-line access, set the
GenerateSVDPITestBench property of makehdltb. See (HDL Coder).

27-2



 DPI-C Component Generation with Simulink

Supported Simulink Data Types

Supported Simulink data types are converted to SystemVerilog data types, as shown in
the following table.

Simulink SystemVerilog

uint8 byte unsigned

uint16 shortint unsigned

uint32 int unsigned

uint64 longint unsigned

int8 byte

int16 shortint

int32 int

int64 longint

single shortreal

double real

boolean bit

complex The coder flattens complex signals into real
and imaginary parts in the SystemVerilog
interface.

vectors, matrices arrays

For example, a 4-by-2 matrix in Simulink is
converted into a one-dimensional array of
eight elements in SystemVerilog.

non-virtual bus The coder flattens the bus into separate
component signals in the SystemVerilog
interface.

Embedded Coder converts fixed-point data types to one of the supported Simulink data
types.

Generated SystemVerilog Wrapper

• “Generated Component Functions” on page 27-4
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• “Parameter Tuning” on page 27-5
• “Test Point Access Functions” on page 27-6
• “Extra Sample Delay” on page 27-6

Generated Control Signals

All SystemVerilog code generated by the SystemVerilog DPI generator contains these
control signals:

• clk: synchronization clock
• clk_enable: clock enable
• reset: asynchronous reset

Generated Component Functions

SystemVerilog code generated by the SystemVerilog DPI generator contains these
functions:

    // Declare imported C functions

    import "DPI-C" function chandle DPI_subsystemname_initialize(chandle existhandle);

    import "DPI-C" function void DPI_subsystemname_output(input chandle objhandle, input real subsystemname_U_In1, inout real subsystem_Y_Out1);

    import "DPI-C" function void DPI_subsystemname_update(input chandle objhandle, input real subsystemname_U_In1);

    import "DPI-C" function void DPI_subsystemname_terminate(input chandle objhandle);

Where subsystem is the name of the subsystem you generated code for.

If your model also contains tunable parameters, see “Parameter Tuning” on page
27-5.

• Initialize function — The Initialize function is called at the beginning of the
simulation.

For example, for a subsystem titled dut:

    initial begin

        objhandle = DPI_dut_initialize(objhandle);

    end

• Output function — At the positive edge of clock, if clk_enable is high, the output
function is called first, and then the update function is called.
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For example, for a subsystem titled dut:

if(clk_enable) begin

    DPI_dut_output(objhandle, dut_U_In1, dut_Y_Out1);

    DPI_dut_update(objhandle, dut_U_In1);

end

• Update function

At the positive edge of clock, if clk_enable is high, the update function is called after
the output function.

For example, for a subsystem titled dut:

if(clk_enable) begin

    DPI_dut_output(objhandle, dut_U_In1, dut_Y_Out1);

    DPI_dut_update(objhandle, dut_U_In1);

end

• Terminate function

Set specific conditions for early termination of simulation.

For example, for a subsystem titled dut:

if (condition for termination) begin

   DPI_dut_terminate(objhandle);

end

The function details in the SystemVerilog code generated from your system vary. You can
examine the generated code for specifics. For an example of the generated functions in
context, see the example .

Parameter Tuning

You may want to run different simulations with various values for the parameters
in your Simulink model. If your system has tunable parameters, the generated
SystemVerilog code also contains a Set Parameter function for each tunable parameter.

The DPI-C component generator generates a Set Parameter function for each tunable
parameter in the format DPI_subsystemname_setparam_tunableparametername.

In this example, the tunable gain parameter has its own setparam_gain function.

import "DPI-C" function void DPI_dut_setparam_gain(input chandle objhandle, input real dut_P_gain);
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The generated SystemVerilog code does not call this function. Instead, the default
parameters are used. To change those parameters during simulation, explicitly call the
specific setparam function. For example, in the subsystem titled dut, you can change
the gain during simulation to a value of 6 by inserting the following call:

DPI_dut_setparam_gain(objhandle, 6);

To make a parameter tunable, create a data object from your subsystem before
generating the SystemVerilog code. See the tutorial “Tune Gain Parameter During
Simulation” on page 28-16.

Test Point Access Functions

This feature enables you to access internal signals of the SystemVerilog DPI-C
component in your HDL simulator. You can designate internal signals in your model
as test points and configure the SystemVerilog DPI-C generator to create individual or
grouped access functions.

You can also enable logging on test points. This allows you to use the generated test
bench to compare logged data from Simulink with values observed while running the
SystemVerilog component.

See “SystemVerilog DPI-C Component Test Point Access” on page 28-13 and .

Extra Sample Delay

Compared with the original Simulink model, the generated SystemVerilog module
introduces one extra sample delay at the output. For example, in the following Simulink
model, the output is one-sample delayed version of the input signal.

The generated C code preserves this behavior, and the output comprises one sampled
delayed version of the input signal. However, in the SystemVerilog wrapper file, the clock
signal is used to synchronize the input and output signals:

always @(posedge clk) begin

    DPI_blk2_output(blk2_U_In1, blk2_Y_Out1);

    DPI_blk2_update();
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end

The output of the SystemVerilog module can only be updated on the rising edge of the
clock. This requirement introduces an extra sample delay, as the next figure shows.

Customization

You can customize the generated SystemVerilog wrapper by modifying the template
shipped with HDL Verifier (svdpi_grt_template.vgt). Alternatively, you can create
your own custom template. Provide anchors for the generated code in your template and
to verify that the template generates valid SystemVerilog code.

The default SystemVerilog template, provided by HDL Verifier, is
svdpi_grt_template.vgt. In this template, special clken_in and clken_out control
signals are added to the SystemVerilog module interface.

You can generate SystemVerilog DPI-C components from multiple subsystems and
connect them together in an HDL Simulator. When you do so, these control signals
determine the execution order of those components. They also minimize the delay
between the Simulink signal and the SystemVerilog signal.

You can also specify your own template file with the following conditions:

• The file must be on the MATLAB path and searchable.
• The file must have a .vgt extension.

You can use these optional tokens to customize the generated code by inserting them
inside comment statements throughout the template:

• %<FileName>

• %<PortList>

• %<ImportInitFunction>

• %<ImportOutputFunction>

• %<ImportUpdateFunction>
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• %<ImportSetParamFunction>

• %<CallInitFunction>

• %<CallUpdateFunction>

• %<CallOutputFunction>

See “Customize Generated SystemVerilog Code” on page 28-6 for step-by-step
instructions on customizing your code.

Note: The SystemVerilog DPI-C component generator does not generate a test bench for
a component that has been customized.

Limitations

• If you have matrices or vectors, HDL Verifier limits them to one–dimensional array
in SystemVerilog. For example, a 4-by-2 matrix in Simulink is converted to a one-
dimensional array of eight elements in SystemVerilog.

• SystemVerilog DPI-C component generation supports the following subsystems for
code generation only. There is no test bench support for these subsystems.

• Triggered subsystem
• Enabled subsystem
• Subsystem with action port

For best results, avoid exporting multiple subsystems separately because it can be
difficult to achieve the correct execution order. Instead, combine multiple subsystems
into one and generate code from the newly created, single subsystem.

Related Examples
• “Generate SystemVerilog DPI-C Component” on page 28-2
• “Generate Cross-Platform DPI-C Components” on page 28-21
• “Customize Generated SystemVerilog Code” on page 28-6
• “Verify Generated Component Against Simulink Data” on page 28-10
• “Use Generated DPI-C Functions in SystemVerilog” on page 28-11
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SystemVerilog DPI-C Test Benches

HDL Verifier provides two types of test benches that generate a C-language component
and integrate it into a SystemVerilog test bench with a direct programming interface
(DPI). One test bench verifies a generated C component against saved data vectors from
your Simulink subsystem. The other test bench verifies generated HDL code against a C
component generated from the entire Simulink model.

• Component Test Bench — When you generate a C component from a Simulink
subsystem for use as a DPI component, you can optionally generate a SystemVerilog
test bench. The test bench verifies the generated DPI-C component against
data vectors from your Simulink model. This feature is available in the Model
Configuration Parameters dialog box, under Code Generation. See “Generate
SystemVerilog DPI-C Component” on page 28-2.

• HDL Code Test Bench — When you generate HDL code from a subsystem, using
HDL Coder, you can optionally generate a SystemVerilog test bench. This test
bench compares the output of the HDL implementation against the results of the
Simulink model. You can access this feature in HDL Workflow Advisor under HDL
Code Generation > Set Testbench Options, or in the Model Configuration
Parameters dialog box, under HDL Code Generation > Test Bench. Alternatively,
for command-line access, set the GenerateSVDPITestBench property of makehdltb.
See (HDL Coder).

Both types of test benches require a Simulink Coder license.

Limitations

• HDL Verifier converts matrices and vectors to one-dimensional arrays in
SystemVerilog. For example, a 4-by-2 matrix in Simulink is converted to a one-
dimensional array of eight elements in SystemVerilog.

• These subsystems do not support DPI-C test bench generation:
• Triggered subsystem
• Enabled subsystem
• Subsystem with action port
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Component Test Bench

The SystemVerilog DPI-C component generator also creates a test bench. You can use
this test bench to verify that the generated SystemVerilog component is functionally
equivalent to the original Simulink subsystem. The test bench saves data vectors from
your Simulink simulation to apply as stimuli and to check against the output of the
component. This test bench is not intended as a replacement for a system test bench
for your own application. However, you can use the generated test bench as a starting
example for your own system test bench.

If you enable logging on test points in your model, the generated test bench also
compares their signal values in the SystemVerilog component with logged values from
Simulink.

Note: HDL Verifier does not support test bench generation for custom generated
SystemVerilog code. See “Customization” on page 27-7.

Multirate Component Test Bench

When your subsystem contains signals with more than one sample rate, the generated
test bench includes a timing controller module. The timing controller generates input
clock signals at the appropriate rates. Input stimuli and expected data outputs are
applied and checked according to their sample rates.
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HDL Code Test Bench

When you generate HDL code from a subsystem, using HDL Coder, you can also generate
a SystemVerilog DPI-C test bench. This test bench compares the output of the HDL
implementation against the results of the Simulink model. In addition to C code for
your DUT subsystem, the coder also generates C code for the portion of your model that
generates the input stimuli. Generation of this test bench is faster than the default
HDL test bench for large data sets. This advantage is because the coder does not run
the Simulink model to obtain the input and output data vectors. The generated C
component calculates input stimuli and the output results for comparison with the HDL
implementation.
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The generated SystemVerilog test bench includes:

• Generated Verilog or VHDL code for your subsystem
• Generated C component
• Code to compare the output of the HDL code with the output of the C component.

Run this test bench to verify the generated HDL code implements the same algorithm as
your Simulink model.
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Generate SystemVerilog DPI-C Component

In this section...

“Step 1. Select Target” on page 28-2
“Step 2. Select Toolchain” on page 28-2
“Step 3. Enable Test Point Access (Optional)” on page 28-3
“Step 4. Configure Optional Generated Test Bench” on page 28-3
“Step 5. Generate SystemVerilog DPI-C Component” on page 28-4

Step 1. Select Target

1 Open your model, and select Simulation > Model Configuration Parameters.
2 Select the Code Generation pane.
3 At System target file, under Target Selection, click Browse. Select

systemverilog_dpi_grt.tlc from the list.

• If you have a license for Embedded Coder, you can select target
systemverilog_dpi_ert.tlc. This target allows you to access its additional
code generation options on the Code Generation pane of Model Configuration
Parameters.

Step 2. Select Toolchain

Still on the Code Generation pane, select a Toolchain. To generate a shared library
for the same operating system as the host machine, select a compiler from the list of
installed compilers or select Automatically locate an installed toolchain.
To use the compiler included with the HDL simulator, or to generate a component for a
different operating system, or to generate an HDL simulator project rather than a shared
library, select an HDL simulator and your target operating system.

For cross-platform generation, select Package code and artifacts to generate a .zip
file to port the generated files to the target machine. See “Generate Cross-Platform DPI-
C Components” on page 28-21.

You can optionally add additional compilation flags. Under Build Configuration, select
Specify. To display the current flags, click Show Settings.

28-2



 Generate SystemVerilog DPI-C Component

Step 3. Enable Test Point Access (Optional)

Execute this step if you designated internal signals in your model as test points and want
to access them in the generated DPI-C component.

1 In the left pane, select Code Generation > Interface.
2 In Generate API for, ensure the signals check box is selected.

3 Select Code Generation > SystemVerilog DPI.
4 For Generate access function to test point, select One function per Test

Point or One function for all Test Points.

See “SystemVerilog DPI-C Component Test Point Access” on page 28-13.

Step 4. Configure Optional Generated Test Bench

1 Select the Code Generation > SystemVerilog DPI pane.
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2 Select Generate test bench if you want to generate a test bench. The test bench
checks the generated C component against data vectors from your Simulink
subsystem.

3 Click OK to accept these settings and to close the Configuration Parameters dialog
box. Go to “Step 5. Generate SystemVerilog DPI-C Component” on page 28-4.

Step 5. Generate SystemVerilog DPI-C Component

1 In your model, right-click the block containing the subsystem you want to generate
the component from and set the subsystem as atomic.

a Click the subsystem.
b Select Block Parameters (Subsystem).
c Select Treat as atomic unit.

2 Select Code > C/C++ Code > Build Selected Subsystem.
3 Click Build.
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The SystemVerilog component is generated as
subsystem_build/subsystem_dpi.sv, where subsystem is the name of the
subsystem from which you generated the DPI-C component.

If you built the component for the host machine, you can now use the component. To copy
the built component to another machine with the same operating system, copy these files:

• Shared library, subsystem.so, or subsystem.dll
• Generated SystemVerilog wrapper, subsystem.sv
• (Optional) Generated test bench folder, dpi_tb

To port the component to another machine with a different operating system, follow the
instructions in “Generate Cross-Platform DPI-C Components” on page 28-21.

Related Examples
• “Use Generated DPI-C Functions in SystemVerilog” on page 28-11
• “Verify Generated Component Against Simulink Data” on page 28-10
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Customize Generated SystemVerilog Code

In this section...

“Set Up Model for Customized Code Generation” on page 28-6
“Generate Customized SystemVerilog DPI-C Component” on page 28-9

Set Up Model for Customized Code Generation

1 Open your model and select Simulation > Model Configuration Parameters.
2 Select the Code Generation pane.
3 At System target file, click Browse and select systemverilog_dpi_grt.tlc.

• If you have a license for Embedded Coder, you can select target
systemverilog_dpi_ert.tlc. This target allows you to access its additional
code generation options (on the Code Generation pane in Model Configuration
Parameters).

4 At Toolchain, under Build process, select the toolchain you want to use from
the list. See “Generate Cross-Platform DPI-C Components” on page 28-21 for
guidance on selecting a toolchain.

You can optionally select flags for compilation. Under Build Configuration, select
Specify from the drop-down list. Click Show Settings to display the current flags.

5 Expand Code Generation and select SystemVerilog DPI.
6 Select option Customize generated SystemVerilog code.
7 Specify the SystemVerilog template you want to use.
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You can select Edit to see the contents of the template. The following
example shows the content of the template file provided with HDL Verifier,
svdpi_grt_template.vgt:
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For more about the customized template, see “Customization” on page 27-7.
8 Click OK to accept these options and close the Configuration Parameters dialog

box. Next, go to “Generate Customized SystemVerilog DPI-C Component” on page
28-9.
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Generate Customized SystemVerilog DPI-C Component

1 In your model, generate C code for subsystem.

You can generate C code from the command line by using the MATLAB command
rtwbuild.

2 If you built the component for the host machine, you can now use the component.
If you intend to port the component to another machine with a different operating
system, see “Generate Cross-Platform DPI-C Components” on page 28-21.
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Verify Generated Component Against Simulink Data

For Mentor Graphics ModelSim and QuestaSim

1 Start ModelSim or QuestaSim in GUI mode.
2 Change your current folder to the dpi_tb folder under the code generation folder in

your HDL simulator installation.
3 Enter the following command to start your simulation:

do run_tb_mq.do

4 When the simulation finishes, it displays the following message in your console:

**************TEST COMPLETED (PASSED)**************

For the Cadence Incisive Simulator

1 Start your terminal shell.
2 Change the current folder to "dpi_tb" under the code generation folder.
3 Enter the following command in your shell.

sh run_tb_ncsim.sh

4 When the simulation finishes, it displays the following message in your console:

**************TEST COMPLETED (PASSED)**************
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Use Generated DPI-C Functions in SystemVerilog

To use the generated DPI-C component in a SystemVerilog environment, first import the
generated functions with “DPI” declarations within your SystemVerilog module. Then,
call and schedule the generated functions. When you compile the SystemVerilog code
that contains the imported generated functions, use a DPI-aware SystemVerilog compiler
and specify the component file names.

The following example demonstrates adding the generated DPI-C component for the
DPI_blk block to a SystemVerilog module.

1 Import the generated functions:

import "DPI-C" function void DPI_blk1_initialize();

import "DPI-C" function void DPI_blk1_ouptut(output real blk1_Y_Out1);

import "DPI-C" function void DPI_blk1_update(input real blk1_U_On1);

2 Call the Initialize function.

DPI_blk1_initialize();

3 Schedule the output and update function calls:

DPI_blk1_output( blk1_Y_Out1);

DPI_blk1_update( blk1_U_In1);

Example

import "DPI-C" function void DPI_blk1_initialize();

import "DPI-C" function void DPI_blk1_ouptut(output real blk1_Y_Out1);

import "DPI-C" function void DPI_blk1_update(input real blk1_U_On1);

module test_twoblock_tb;

  initial begin

   DPI_blk1_initialization();

  end

  always@(posedge clk) begin

   #1

   DPI_blk1_output(blk1_Y_Out1);

   DPI_blk1_update(blk1_U_In1);

  end

28-11



28 SystemVerilog DPI-C Component Generation for Simulink

  always@(posedge clk)

   begin

    blk1_U_In1 = blk1_U_In1 + 1.0;

   end
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SystemVerilog DPI-C Component Test Point Access

You can designate internal signals in your model as test points and configure the
SystemVerilog DPI-C generator to create one or more access functions. You can also
enable logging on test points. Then you can use the generated test bench to compare the
Simulink data with values observed while running the SystemVerilog component.

In this section...

“Step 1. Choose Internal Signals” on page 28-13
“Step 2. Add Test Points” on page 28-13
“Step 3. Enable Component Interface” on page 28-14
“Step 4. Configure Access Function” on page 28-15

Step 1. Choose Internal Signals

Choose an internal signal in your model, following these guidelines:

• Enable the test point at the source of the signal. If the test point is on a connecting
signal, such as between subsystems, the signal might be optimized out of the
generated code.

• Select a signal that is not an input or output of your component. If you select an I/O
signal, the generator does not provide an access function. Such an access function is
redundant because you already have visibility of the I/O signals.

• Complex signals are not supported.
• Virtual signals and buses are not supported.
• Continuous, asynchronous, and triggered sample times are not supported.
• Multirate designs are not supported for signal logging. You can add a test point,

and generate an access function. However, the test bench is single rate and cannot
perform a comparison against logged data at different rates.

Step 2. Add Test Points

1 In your model, right-click the signal and select Properties.
2 Select the Test point check box.
3 Give the test point a unique name in the Signal name box.
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4 Optionally, select Log signal data. This check box enables the generated test bench
to compare logged data from the model against values observed while running the
generated component. The test bench uses the generated access functions to fetch
the signal values during the simulation.

For more details on test points and logging in Simulink, see “Test Points” (Simulink).

Step 3. Enable Component Interface

1 From your model, select Simulation > Model Configuration Parameters.
2 From the left pane, select Code Generation > Interface.
3 In Generate API for, ensure the signals check box is selected. The other check

boxes do not affect the DPI-C component or test bench.
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Step 4. Configure Access Function

1 In Model Configuration Parameters, in the left pane, select Code Generation >
SystemVerilog DPI.

2 For Generate access function to test point, select One function per Test
Point or One function for all Test Points.

If you select One function for all Test Points, a single function returns
values for all test points.

DPI_TestPointAccessFcn(input chandle objhandle,input real Name1,inout real Name2);

If you select One function per Test Point, each signal has a separate access
function.

DPI_Name_TestPoint(input chandle objhandle,inout real Name);

If you select None, the tool does not generate access functions.

Related Examples
•
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Tune Gain Parameter During Simulation
In this section...

“Step 1. Create a Simple Gain Model” on page 28-16
“Step 2. Create Data Object for Gain Parameter” on page 28-16
“Step 3. Generate SystemVerilog DPI-C Component” on page 28-18
“Step 4. Add Parameter Tuning Code to SystemVerilog File” on page 28-19
“Step 5. Run Simulation with Parameter Change” on page 28-20

Step 1. Create a Simple Gain Model

If you would like to perform the example steps yourself, first create an example model.

The example model has a single gain block with a gain parameter that is tuned during
simulation.

1 Open the Simulink Block Library and click Commonly Used Blocks.
2 Add an Inport block.
3 Add a Gain block. Double-click to open the block mask and change the value in the

Gain parameter to gain.
4 Add an Outport block.
5 Connect all blocks as shown in the preceding diagram.

Step 2. Create Data Object for Gain Parameter

1 Create a data object for the gain parameter:

At the MATLAB command prompt, type:

 gain = Simulink.Parameter

2 Next, type:

open('gain')
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This command opens the property dialog box for the parameter object.
3
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Enter or select the following values:

• Value: 2
• Data type: double
• Storage class: SimulinkGlobal

4 Click OK.

For more information about using parameter objects for code generation, see “Block
Parameter Representation in the Generated Code” (Simulink Coder).

Step 3. Generate SystemVerilog DPI-C Component

1 With the gain model open, select Simulation > Model Configuration
Parameters.

2 Click Code Generation.
3 At System target file, click Browse and select systemverilog_dpi_grt.tlc.

• If you have a license for Embedded Coder, you can select target
systemverilog_dpi_ert.tlc. This target allows you to access its additional
code generation options (on the Code Generation pane in Model Configuration
Parameters).

4 At Toolchain, under Build process, select the toolchain you want to use from
the list. See “Generate Cross-Platform DPI-C Components” on page 28-21 for
guidance on selecting a toolchain.

You can optionally select flags for compilation. Under Build Configuration, select
Specify from the drop-down list. Click Show Settings to display the current flags.

5 In the Code Generation group, click SystemVerilog DPI.
6 Leave both Generate test bench and Customize generated SystemVerilog

code cleared (because this example modifies the generated SystemVerilog code, any
test bench generated at the same time does not have the correct results).

7 Click OK to accept these settings and to close the Configuration Parameters dialog
box.

8 In the example model, right-click the gain and delay blocks and select Create
Subsystem from Selection. For this example, rename the subsystem dut.
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9 Right-click the subsystem and select C/C++ Code > Build this subsystem.
10 In the Build code for subsystem dialog box, click Build.

The SystemVerilog component is generated as dut_build/dut_dpi.sv in your
current working folder.

Step 4. Add Parameter Tuning Code to SystemVerilog File

1 Open the file dut_build/dut_dpi.sv and examine the generated code.
2 In this example, after you call the initialize function, call the

DPI_dut_setparam_gain function with the new parameter value. For example,
here the gain is changed to 6:

DPI_dut_setparam_gain(objhandle, 6);

3 If the asynchronous reset signal is high (goes from 0 to 1), call Initialize again.

if(reset == 1'b1) begin

    objhandle = DPI_dut_initialize(objhandle);

    DPI_dut_setparam_gain(objhandle, 6);

end

4 The SystemVerilog code now looks like this:
// File: dut_build\dut_dpi.sv

// Created: 2015-01-21 13:58:40

// Generated by MATLAB 8.5 and HDL Verifier 4.6

`timescale 1ns / 1ns

module dut_dpi(

    input clk,

    input clk_enable,

    input reset,

    input real dut_U_In1,

    output real dut_Y_Out1

);

    chandle objhandle=null;
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    // Declare imported C functions

    import "DPI-C" function chandle DPI_dut_initialize(chandle existhandle);

    import "DPI-C" function void DPI_dut_output(input chandle objhandle, input real dut_U_In1, inout real dut_Y_Out1);

    import "DPI-C" function void DPI_dut_update(input chandle objhandle, input real dut_U_In1);

    import "DPI-C" function void DPI_dut_terminate(input chandle objhandle);

    import "DPI-C" function void DPI_dut_setparam_gain(input chandle objhandle, input real dut_P_gain);

    initial begin

        objhandle = DPI_dut_initialize(objhandle);

        DPI_dut_setparam_gain(objhandle, 6);

    end

    always @(posedge clk or posedge reset) begin

        if(reset == 1'b1) begin

            objhandle = DPI_dut_initialize(objhandle);

            DPI_dut_setparam_gain(objhandle, 6);

        end

        else if(clk_enable) begin

            DPI_dut_output(objhandle, dut_U_In1, dut_Y_Out1);

            DPI_dut_update(objhandle, dut_U_In1);

        end

    end

endmodule

Step 5. Run Simulation with Parameter Change

To run your simulation, build the shared library and export the component, as explained
in the following topics:

• Rebuild shared library as described in “Build Libraries” on page 28-22.
• “Use Generated DPI-C Functions in SystemVerilog” on page 28-11
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Generate Cross-Platform DPI-C Components

Use DPI-C component generation to export a Simulink subsystem to a C language
component with a digital programming interface (DPI) for use in a Verilog or
SystemVerilog simulation. You can customize DPI-C generation for ModelSim or Incisive
(Linux only), or you can generate a generic DLL.

When you generate the component from a Windows 64 host machine, you can also build
the component libraries and run the simulation on a different operating system. If your
target and host are not the same, you must port and build the shared libraries or HDL
simulator projects manually. You cannot port a DPI-C component generated on a Linux
machine to any other operating system.

Select Target Toolchain

When your target machine uses the same operating system as your host, you can select
an installed compiler or request that the tools find a compiler automatically. If you want
to generate a simulator project, or if you have no other compilers installed, select an HDL
simulator for the same operating system as the host. However, if your target operating
system is different from the host, you must select a target simulator and operating
system.

1 In Simulink Configuration Parameters, on the Code Generation pane, select a
target Toolchain. This option specifies the target simulator and operating system
where you run simulations. The supported cross-product toolchains are:

• Mentor Graphics ModelSim/QuestaSim (64-bit Windows) (available
from Windows host only)
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• Mentor Graphics ModelSim/QuestaSim (32-bit Windows) (available
from Windows host only)

• Cadence Incisive (64-bit Linux)

• Mentor Graphics ModelSim/QuestaSim (64-bit Linux)

To build a shared library for a different operating system, you must select one of the
simulator options. You can then build the library on your target machine.

2 Select Package code and artifacts. This option generates a .zip file so you can
copy the generated files and build the component libraries on the target machine.
You can optionally specify a name for this file. If you do not specify a name, it is
named subsystem.zip.

Generate Component

To generate your component and an optional test bench, see “Generate SystemVerilog
DPI-C Component” on page 28-2.

Copy to Target Machine

To use your generated component on a different operating system, you must copy the
generated files to the new machine and build the libraries there.

1 Copy the generated subsystem.zip file from the host machine to the target
machine. The .zip file is located in the same folder as your model. The makefile,
ModelSim .do file, or Incisive .sh file is included in the .zip file.

2 Unzip the file into a folder of your choice. Flatten the folder structure when
unzipping the files.

• In Linux, enter this command:

unzip -j zipfile.zip

• In Windows, when you unzip the files, clear the Use folder names check box.

Build Libraries

When you generate the component on the host machine, the libraries are built for that
operating system. To port the component to a different operating system, you must build

28-22



 Generate Cross-Platform DPI-C Components

the components manually on the target machine. To build your simulator project or
generic shared library, find your target operating system and HDL simulator in the table
and follow the instructions.

Target Operating
System

HDL
Simulator

Build Instructions

Generic
DLL

• Start Visual Studio Command Prompt.
• In the command window, change to the folder where

you unzipped the generated files.
• Build the library with this command:

nmake -f makefile_dpi_vc.mk

This command generates the subsystem.dll file.
subsystem is the name of the DPI-C component you
generated.

Windows 32

ModelSim • Check that the gcc_ver_mingw32 library is installed
in your ModelSim installation folder. This compiler
is available when you install ModelSim. Install the
compiler before building the component.

• Start the ModelSim HDL simulator.
• In the command window, change to the folder where

you unzipped the generated files.
• Build the project with this command:

do subsystem.do

subsystem is the name of the DPI-C component you
generated.

Linux Generic SO • In a terminal shell, go to the folder where you unzipped
the generated code.

• Build the shared library with this command:

make -f makefile_dpi_gcc.mk

This command generates the subsystem.so file.
subsystem is the name of the DPI-C component you
generated.
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Target Operating
System

HDL
Simulator

Build Instructions

ModelSim • Start the ModelSim HDL simulator.
• In the command window, change to the folder where

you unzipped the generated files.
• Build the project with this command:

do subsystem.do

subsystem is the name of the DPI-C component you
generated.

Incisive • In a terminal shell with Incisive on the path, build the
project with this command:

sh subsystem.sh

subsystem is the name of the DPI-C component you
generated.

Related Examples
• “Use Generated DPI-C Functions in SystemVerilog” on page 28-11
• “Verify Generated Component Against Simulink Data” on page 28-10
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SystemVerilog DPI Pane

In this section...

“SystemVerilog DPI Overview” on page 29-3
“Customize SystemVerilog generated code” on page 29-4
“Source file template:” on page 29-5
“Generate test bench” on page 29-6
“Test point access” on page 29-7

29-2



 SystemVerilog DPI Pane

SystemVerilog DPI Overview

Specify options for exporting a Simulink algorithm (model or subsystem) with a DPI
interface for Verilog or SystemVerilog Simulation. You can wrap generated C code with
a DPI wrapper that communicates with a SystemVerilog thin interface function in a
SystemVerilog simulation.

This feature is available in the Model Configuration Parameters dialog. You must have
an Embedded Coder license to use this feature.
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Customize SystemVerilog generated code

Indicate that you want to customize the generated SystemVerilog code.

Settings

Default: Off

 On
Customize generated SystemVerilog code

 Off
Do not customize generated SystemVerilog code

Dependencies

You must enter a template file in Source file template: if you want the generator to
include customized code.
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Source file template:

Specify the file name and location of the template you want to use for customizing the
generated SystemVerilog code. You may use the template supplied by HDL Verifier
(svdpi_ert_template.vgt) or you may specify your own template file with the
following conditions:

• The file must be on MATLAB path and be searchable.
• The file must have a .vgt extension.
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Generate test bench

Indicate that you want to generate a test bench for the DPI component.

Settings

Default: Off

 On
Create a test bench for the generated DPI component

 Off
Do not create a test bench for the generated DPI component
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Test point access

Select the type of test point access functions to generate in the SystemVerilog DPI
component.

Settings

Default: None

None
The tool does not generate test point access functions.

One function per Test Point
The component includes a separate access function for each signal.

DPI_Name_TestPoint(input chandle objhandle,inout real Name);

One function for all Test Points
The component includes a single access function that returns values for all test
points.

DPI_TestPointAccessFcn(input chandle objhandle,input real Name1,inout real Name2);
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